




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某幾何體的三視圖如圖所示,其中正視圖與側視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.2.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了3.造紙術、印刷術、指南針、火藥被稱為中國古代四大發明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發明對中國古代的政治,經濟,文化的發展產生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發明,能說出兩種發明的有45人,能說出3種及其以上發明的有32人,據此估計該校三級的500名學生中,對四大發明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人4.達芬奇的經典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數百年來讓無數觀賞者人迷.某業余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數據:(其中).根據測量得到的結果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角大約等于()A. B. C. D.5.下列命題中,真命題的個數為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.36.執行程序框圖,則輸出的數值為()A. B. C. D.7.執行如圖所示的程序框圖,輸出的結果為()A. B. C. D.8.已知函數若函數在上零點最多,則實數的取值范圍是()A. B. C. D.9.已知復數z滿足(其中i為虛數單位),則復數z的虛部是()A. B.1 C. D.i10.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內容,立足全體黨員?面向全社會的優質平臺,現日益成為老百姓了解國家動態?緊跟時代脈搏的熱門?該款軟件主要設有“閱讀文章”?“視聽學習”兩個學習模塊和“每日答題”?“每周答題”?“專項答題”?“挑戰答題”四個答題模塊?某人在學習過程中,“閱讀文章”不能放首位,四個答題板塊中有且僅有三個答題板塊相鄰的學習方法有()A.60 B.192 C.240 D.43211.若實數滿足的約束條件,則的取值范圍是()A. B. C. D.12.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則的最小值是______.14.已知向量=(-4,3),=(6,m),且,則m=__________.15.集合,,若是平面上正八邊形的頂點所構成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;16.運行下面的算法偽代碼,輸出的結果為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.18.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.19.(12分)設,函數,其中為自然對數的底數.(1)設函數.①若,試判斷函數與的圖像在區間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.20.(12分)一酒企為擴大生產規模,決定新建一個底面為長方形的室內發酵館,發酵館內有一個無蓋長方體發酵池,其底面為長方形(如圖所示),其中.結合現有的生產規模,設定修建的發酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發酵池造價總費用不超過65400元(1)求發酵池邊長的范圍;(2)在建發酵館時,發酵池的四周要分別留出兩條寬為4米和米的走道(為常數).問:發酵池的邊長如何設計,可使得發酵館占地面積最小.21.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.22.(10分)在中,角的對邊分別為,且.(1)求角的大小;(2)若函數圖象的一條對稱軸方程為且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點睛】本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現.2、C【解析】
假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.3、D【解析】
先求得名學生中,只能說出一種或一種也說不出的人數,由此利用比例,求得名學生中對四大發明只能說出一種或一種也說不出的人數.【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎題.4、A【解析】
由已知,設.可得.于是可得,進而得出結論.【詳解】解:依題意,設.則.,.設《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關系、三角函數的單調性、切線的性質,考查了推理能力與計算能力,屬于中檔題.5、C【解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數函數單調性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.6、C【解析】
由題知:該程序框圖是利用循環結構計算并輸出變量的值,計算程序框圖的運行結果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點睛】本題主要考查程序框圖中的循環結構,屬于簡單題.7、D【解析】
由程序框圖確定程序功能后可得出結論.【詳解】執行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結論,也可以由程序框圖確定程序功能,然后求解.8、D【解析】
將函數的零點個數問題轉化為函數與直線的交點的個數問題,畫出函數的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結合,即可求解.【詳解】由圖知與有個公共點即可,即,當設切點,則,.故選:D.【點睛】本題考查了函數的零點個數的問題,曲線的切線問題,注意運用轉化思想和數形結合思想,屬于較難的壓軸題.9、A【解析】
由虛數單位i的運算性質可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數單位i的運算性質、復數的概念,屬于基礎題.10、C【解析】
四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數為.故選:C.【點睛】本題考查排列組合的應用,考查捆綁法和插入法求解排列問題.對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.11、B【解析】
根據所給不等式組,畫出不等式表示的可行域,將目標函數化為直線方程,平移后即可確定取值范圍.【詳解】實數滿足的約束條件,畫出可行域如下圖所示:將線性目標函數化為,則將平移,平移后結合圖像可知,當經過原點時截距最小,;當經過時,截距最大值,,所以線性目標函數的取值范圍為,故選:B.【點睛】本題考查了線性規劃的簡單應用,線性目標函數取值范圍的求法,屬于基礎題.12、B【解析】
由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】
根據,利用基本不等式可求得函數最值.【詳解】,,當且僅當且,即時,等號成立.時,取得最小值.故答案為:【點睛】本題考查基本不等式,構造基本不等式的形式是解題關鍵.14、8.【解析】
利用轉化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標運算、平面向量的數量積、平面向量的垂直以及轉化與化歸思想的應用.屬于容易題.15、②③【解析】
根據對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【點睛】本題考查了根據集合的交集求參數,意在考查學生的計算能力和轉化能力,利用對稱性是解題的關鍵.16、【解析】
模擬程序的運行過程知該程序運行后計算并輸出的值,用裂項相消法求和即可.【詳解】模擬程序的運行過程知,該程序運行后執行:.故答案為:【點睛】本題考查算法語句中的循環語句和裂項相消法求和;掌握循環體執行的次數是求解本題的關鍵;屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)點M的極坐標為或(2)【解析】
(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,∵∴或,所以點M的極坐標為或(2)由題意可設,.由,得,.故時,的最大值為.【點睛】本小題主要考查極坐標的求法,考查極坐標下兩點間距離的計算以及距離最值的求法,屬于中檔題.18、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性質可得平面,即可得到,從而得證;(Ⅱ)在平面中,過點作于點,則平面,如圖所示建立空間直角坐標系,設,其中,利用空間向量法得到二面角的余弦,即可得到的關系,從而得解;【詳解】解:(Ⅰ)證明:在中,,解得,則,從而因為平面平面,平面平面所以平面,又因為平面,所以,因為,,平面,平面,所以平面;(Ⅱ)解:在平面中,過點作于點,則平面,如圖所示建立空間直角坐標系,設,其中,則設平面的法向量為,則,即,令,則又平面的一個法向量,則從而,故則直線與平面所成的角為,大小為.【點睛】本題考查線面垂直的判定,面面垂直的性質定理的應用,利用空間向量法解決立體幾何問題,屬于中檔題.19、(1)①函數與的圖象在區間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結合函數零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區間,確定的范圍即可.【詳解】解:(1)①當時,函數,令,,則,,故,又函數在區間上的圖象是不間斷曲線,故函數在區間上有零點,故函數與的圖象在區間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數在和上單調遞增,又函數在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時,遞減,故當時,,遞增,當時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當時,,故在遞減,可得當時,,當時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當時,,當,時,,遞減,當時,,遞增,故在處取極小值,符合題意,綜上,實數的范圍是且.【點睛】本題考查了函數的單調性,最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.20、(1)(2)當時,,米時,發酵館的占地面積最小;當時,時,發酵館的占地面積最小;當時,米時,發酵館的占地面積最小.【解析】
(1)設米,總費用為,解即可得解;(2)結合(1)可得占地面積結合導函數分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設米,則米,由題意知:,得,設總費用為,則,解得:,又,故,所以發酵池邊長的范圍是不小于15米,且不超過25米;(2)設發酵館的占地面積為由(1)知:,①時,,在上遞增,則,即米時,發酵館的占地面積最小;②時,,在上遞減,則,即米時,發酵館的占地面積最小;③時,時,,遞減;時,遞增,因此,即時,發酵館的占地面積最小;綜上所述:當時,,米時,發酵館的占地面積最小;當時,時,發酵館的占地面積最小;當時,米時,發酵館的占地面積最小.【點睛】此題考查函數模型的應用,關鍵在于根據題意恰當地建立模型,利用函數性質討論最值取得的情況.21、(1)證明見解析(2)【解析】
(1)取中點連接,得,可得,可證,可得,進而平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 雪中的溫情抒情作文7篇
- 心理學人格與社會行為分析試題集
- 消防風機系統工程分包協議
- 專業服務費支付流程協議
- 健康飲食與校園食品安全教育的實施路徑
- 醫學微生物學與免疫學基礎測試卷
- 燈具插座采購協議
- 全球軟件市場增長率和市場規模統計表
- 智能家電技術開發合作協議
- 健康產業知識問答系列
- 《全斷面巖石掘進機法水工隧洞工程技術規范(SLT 839-2025)》知識培訓
- 廣東省廣州市越秀區2024-2025學年小升初考試數學試卷含解析
- 《食品包裝紙》課件
- 模切品質培訓
- 人教版音樂六年級下冊全冊教學設計教案
- 2025山東菏澤事業單位招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 世界現代設計史(總結)
- 工地試驗室安全培訓內容
- 醫療設備維保服務項目組織機構及人員配備
- 射頻同軸連接器設計理論基礎
- 2024年內蒙古自治區包頭市公開招聘警務輔助人員(輔警)筆試高頻必刷題試卷含答案
評論
0/150
提交評論