


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數學模擬測試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知傾斜角為的直線與直線垂直,則()A. B. C. D.2.已知集合A,則集合()A. B. C. D.3.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.4.已知函數,不等式對恒成立,則的取值范圍為()A. B. C. D.5.函數的圖象可能是()A. B. C. D.6.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.67.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.8.設為虛數單位,復數,則實數的值是()A.1 B.-1 C.0 D.29.已知向量,,若,則()A. B. C.-8 D.810.已知正項等比數列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.411.已知等差數列中,若,則此數列中一定為0的是()A. B. C. D.12.()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.中,角的對邊分別為,且成等差數列,若,,則的面積為__________.14.已知,滿足約束條件,則的最小值為______.15.在平面直角坐標系中,雙曲線的一條準線與兩條漸近線所圍成的三角形的面積為______.16.在邊長為的菱形中,點在菱形所在的平面內.若,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)討論函數單調性;(2)當時,求證:.18.(12分)某客戶準備在家中安裝一套凈水系統,該系統為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯安裝,再與一級過濾器串聯安裝.其中每一級過濾都由核心部件濾芯來實現在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現需決策安裝凈水系統的同時購買濾芯的數量,為此參考了根據100套該款凈水系統在十年使用期內更換濾芯的相關數據制成的圖表,其中表1是根據100個一級過濾器更換的濾芯個數制成的頻數分布表,圖2是根據200個二級過濾器更換的濾芯個數制成的條形圖.表1:一級濾芯更換頻數分布表一級濾芯更換的個數89頻數6040圖2:二級濾芯更換頻數條形圖以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發生的概率.(1)求一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16的概率;(2)記表示該客戶的凈水系統在使用期內需要更換的二級濾芯總數,求的分布列及數學期望;(3)記分別表示該客戶在安裝凈水系統的同時購買的一級濾芯和二級濾芯的個數.若,且,以該客戶的凈水系統在使用期內購買各級濾芯所需總費用的期望值為決策依據,試確定的值.19.(12分)為了打好脫貧攻堅戰,某貧困縣農科院針對玉米種植情況進行調研,力爭有效地改良玉米品種,為農民提供技術支援,現對已選出的一組玉米的莖高進行統計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數;(2)根據莖葉圖的數據,完成下面的列聯表:抗倒伏易倒伏矮莖高莖(3)根據(2)中的列聯表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?附:,0.0500.0100.0013.8416.63510.82820.(12分)近幾年一種新奇水果深受廣大消費者的喜愛,一位農戶發揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經濟效益.根據資料顯示,產出的新奇水果的箱數x(單位:十箱)與成本y(單位:千元)的關系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數)進行模擬.(Ⅰ)若該農戶產出的該新奇水果的價格為150元/箱,試預測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據統計,10月份的連續11天中該農戶每天為甲地配送的該新奇水果的箱數的頻率分布直方圖如圖所示.(i)若從箱數在內的天數中隨機抽取2天,估計恰有1天的水果箱數在內的概率;(ⅱ)求這11天該農戶每天為甲地配送的該新奇水果的箱數的平均值.(每組用該組區間的中點值作代表)參考數據與公式:設,則0.541.81.530.45線性回歸直線中,,.21.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.22.(10分)已知圓,定點,為平面內一動點,以線段為直徑的圓內切于圓,設動點的軌跡為曲線(1)求曲線的方程(2)過點的直線與交于兩點,已知點,直線分別與直線交于兩點,線段的中點是否在定直線上,若存在,求出該直線方程;若不是,說明理由.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數基本關系式即可得出結果.【題目詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【答案點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數基本關系式,考查計算能力,屬于基礎題.2、A【答案解析】
化簡集合,,按交集定義,即可求解.【題目詳解】集合,,則.故選:A.【答案點睛】本題考查集合間的運算,屬于基礎題.3、D【答案解析】
根據三視圖知,該幾何體是一條垂直于底面的側棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【題目詳解】根據三視圖知,該幾何體是側棱底面的四棱錐,如圖所示:結合圖中數據知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【答案點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.4、C【答案解析】
確定函數為奇函數,且單調遞減,不等式轉化為,利用雙勾函數單調性求最值得到答案.【題目詳解】是奇函數,,易知均為減函數,故且在上單調遞減,不等式,即,結合函數的單調性可得,即,設,,故單調遞減,故,當,即時取最大值,所以.故選:.【答案點睛】本題考查了根據函數單調性和奇偶性解不等式,參數分離求最值是解題的關鍵.5、A【答案解析】
先判斷函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【題目詳解】函數的定義域為,,該函數為偶函數,排除B、D選項;當時,,排除C選項.故選:A.【答案點睛】本題考查根據函數的解析式辨別函數的圖象,一般分析函數的定義域、奇偶性、單調性、零點以及函數值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.6、B【答案解析】
由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【題目詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【答案點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.7、A【答案解析】
作于,于,分析可得,,再根據正弦的大小關系判斷分析得,再根據線面角的最小性判定即可.【題目詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內的直線所成角,故,當且僅當平面時取等號.故.故選:A【答案點睛】本題主要考查了線面角與線線角的大小判斷,需要根據題意確定角度的正弦的關系,同時運用線面角的最小性進行判定.屬于中檔題.8、A【答案解析】
根據復數的乘法運算化簡,由復數的意義即可求得的值.【題目詳解】復數,由復數乘法運算化簡可得,所以由復數定義可知,解得,故選:A.【答案點睛】本題考查了復數的乘法運算,復數的意義,屬于基礎題.9、B【答案解析】
先求出向量,的坐標,然后由可求出參數的值.【題目詳解】由向量,,則,,又,則,解得.故選:B【答案點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.10、D【答案解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【題目詳解】設等比數列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【答案點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數列的知識,是一道中檔題.11、A【答案解析】
將已知條件轉化為的形式,由此確定數列為的項.【題目詳解】由于等差數列中,所以,化簡得,所以為.故選:A【答案點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.12、D【答案解析】
利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【題目詳解】由所以,所以原式所以原式故故選:D【答案點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、.【答案解析】
由A,B,C成等差數列得出B=60°,利用正弦定理得進而得代入三角形的面積公式即可得出.【題目詳解】∵A,B,C成等差數列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【答案點睛】本題考查了等差數列的性質,三角形的面積公式,考查正弦定理的應用,屬于基礎題.14、2【答案解析】
作出可行域,平移基準直線到處,求得的最小值.【題目詳解】畫出可行域如下圖所示,由圖可知平移基準直線到處時,取得最小值為.故答案為:【答案點睛】本小題主要考查線性規劃求最值,考查數形結合的數學思想方法,屬于基礎題.15、【答案解析】
求出雙曲線的漸近線方程,求出準線方程,求出三角形的頂點的坐標,然后求解面積.【題目詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準線方程為,雙曲線的漸近線方程為:,可得準線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標,,,,則三角形的面積為.故答案為:【答案點睛】本題考查雙曲線方程的應用,雙曲線的簡單性質的應用,考查計算能力,屬于中檔題.16、【答案解析】
以菱形的中心為坐標原點建立平面直角坐標系,再設,根據求出的坐標,進而求得即可.【題目詳解】解:連接設交于點以點為原點,分別以直線為軸,建立如圖所示的平面直角坐標系,則:設得,解得,,或,顯然得出的是定值,取則,.故答案為:.【答案點睛】本題主要考查了建立平面直角坐標系求解向量數量積的有關問題,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【答案解析】
(1)根據的導函數進行分類討論單調性(2)欲證,只需證,構造函數,證明,這時需研究的單調性,求其最大值即可【題目詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調遞增,在單調遞減;②當時,由得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增;③當時,,所以在上單調遞增;④當時,由,得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調遞增單調遞減所以.因為,所以,所以.即,所以當時,成立.【答案點睛】考查求函數單調性的方法和用函數的最值證明不等式的方法,難題.18、(1)0.024;(2)分布列見解析,;(3)【答案解析】
(1)由題意可知,若一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16,則該套凈水系統中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,而由一級濾芯更換頻數分布表和二級濾芯更換頻數條形圖可知,一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數條形圖可知,一個二級過濾器需要更換濾芯的個數為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數學期望;(3)由,且,可知若,則,或若,則,再分別計算兩種情況下的所需總費用的期望值比較大小即可.【題目詳解】(1)由題意知,若一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16,則該套凈水系統中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,設“一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16”為事件,因為一個一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,所以.(2)由柱狀圖知,一個二級過濾器需要更換濾芯的個數為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個).或用分數表示也可以為89101112(個).(3)解法一:記表示該客戶的凈水系統在使用期內購買各級濾芯所需總費用(單位:元)因為,且,1°若,則,(元);2°若,則,(元).因為,故選擇方案:.解法二:記分別表示該客戶的凈水系統在使用期內購買一級濾芯和二級濾芯所需費用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統在使用期內購買的各級濾芯所需總費用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因為所以選擇方案:.【答案點睛】此題考查離散型隨機變量的分布列、數學期望的求法及應用,考查古典概型,考查運算求解能力,屬于中檔題.19、(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.【答案解析】
(1)排序后第10和第11兩個數的平均數為中位數;(2)由莖葉圖可得列聯表;(3)由列聯表計算可得結論.【題目詳解】解:(1).(2)抗倒伏易倒伏矮莖154高莖1016(3)由于,因此可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.【答案點睛】本題考查莖葉圖,考查獨立性檢驗,正確認識莖葉圖是解題關鍵.20、(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【答案解析】
(Ⅰ)根據參考數據得到和,代入得到回歸直線方程,,再代入求成本,最后代入利潤公式;(Ⅱ)(ⅰ)首先分別計算水果箱數在和內的天數,再用編號列舉基本事件的方法求概率;(ⅱ)根據頻率分布直方圖直接計算結果.【題目詳解】(Ⅰ)根據題意,,所以,所以.又,所以.所以時,(千元),即該新奇水果100箱的成本為8314元,故該新奇水果100箱的利潤.(Ⅱ)(i)根據頻率分布直方圖,可知水果箱數在內的天數為設這兩天分別為a,b,水果箱數在內的天數為,設這四天分別為A,B,C,D,所以隨機抽取2天的基本結果為,,,,,,,,,,,,,,,共15種.滿足恰有1天的水果箱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 雪中的溫情抒情作文7篇
- 心理學人格與社會行為分析試題集
- 消防風機系統工程分包協議
- 專業服務費支付流程協議
- 健康飲食與校園食品安全教育的實施路徑
- 醫學微生物學與免疫學基礎測試卷
- 燈具插座采購協議
- 全球軟件市場增長率和市場規模統計表
- 智能家電技術開發合作協議
- 健康產業知識問答系列
- 2024年鋼管架工程承包合同書
- 江蘇省南通市2024年中考歷史真題試卷(含答案)
- 艦艇損害管制與艦艇損害管制訓練
- 中職語文職業模塊1.2《寧夏閩寧鎮:昔日干沙灘-今日金沙灘》教案
- 《天文學上的曠世之爭》課件
- 2024年全國財會知識競賽考試題庫(濃縮500題)
- 【課件】慶祝新中國成立75周年主題班會課件
- GB/T 44336-2024素肉制品術語與分類
- 機械手自動操作控制的程序設計
- 請人維修屋頂安全協議書
- 2024年青海省中考生物地理合卷試題(含答案解析)
評論
0/150
提交評論