




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.32.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.83.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.4.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則5.已知m為實數,直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件6.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.7.如圖,正方形網格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對 B.3對C.4對 D.5對8.為實現國民經濟新“三步走”的發展戰略目標,國家加大了扶貧攻堅的力度.某地區在2015年以前的年均脫貧率(脫離貧困的戶數占當年貧困戶總數的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加該項目戶數占2019年貧困戶總數的比)及該項目的脫貧率見下表:實施項目種植業養殖業工廠就業服務業參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍9.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.110.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.11.設,則A. B. C. D.12.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.6二、填空題:本題共4小題,每小題5分,共20分。13.設為定義在上的偶函數,當時,(為常數),若,則實數的值為______.14.曲線y=e-5x+2在點(0,3)處的切線方程為________.15.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.16.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數有兩個極值點,.(1)求實數的取值范圍;(2)證明:.18.(12分)的內角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.19.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.20.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.21.(12分)已知函數(1)若,求證:(2)若,恒有,求實數的取值范圍.22.(10分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標準方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.2.B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.3.A【解析】
先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數關系,兩角和的正弦公式與誘導公式,解題時要根據已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.4.D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.5.A【解析】
根據直線平行的等價條件,求出m的值,結合充分條件和必要條件的定義進行判斷即可.【詳解】當m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l1∥l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結論解答,直線和直線平行,則且兩直線不重合,求出參數的值后要代入檢驗看兩直線是否重合.6.B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7.C【解析】
畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對.【點睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結構特征,考查了面面垂直的證明,屬于中檔題.8.B【解析】
設貧困戶總數為,利用表中數據可得脫貧率,進而可求解.【詳解】設貧困戶總數為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統計,考查了學生的數據處理能力,屬于基礎題.9.C【解析】試題分析:設,由題意,顯然時不符合題意,故,則,可得:,當且僅當時取等號,故選C.考點:1.拋物線的簡單幾何性質;2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.10.A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據a,b,c的關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.11.C【解析】分析:利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡復數,然后求解復數的模.詳解:,則,故選c.點睛:復數是高考中的必考知識,主要考查復數的概念及復數的運算.要注意對實部、虛部的理解,掌握純虛數、共軛復數這些重要概念,復數的運算主要考查除法運算,通過分母實數化轉化為復數的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.12.C【解析】
根據列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數量積的運算,考查向量模的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據為定義在上的偶函數,得,再根據當時,(為常數)求解.【詳解】因為為定義在上的偶函數,所以,又因為當時,,所以,所以實數的值為1.故答案為:1【點睛】本題主要考查函數奇偶性的應用,還考查了運算求解的能力,屬于基礎題.14..【解析】
先利用導數求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點睛】(1)本題主要考查導數的幾何意義和函數的求導,意在考查學生對這些知識的掌握水平和分析推理能力.(2)函數在點處的導數是曲線在處的切線的斜率,相應的切線方程是15.【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數據求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點睛】本題考查幾何體與三視圖的對應關系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關鍵是準確理解幾何體的定義,真正把握幾何體的結構特征,可以根據條件構建幾何模型,在幾何模型中進行判斷.16.【解析】
設是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)先求得導函數,根據兩個極值點可知有兩個不等實根,構造函數,求得;討論和兩種情況,即可確定零點的情況,即可由零點的情況確定的取值范圍;(2)根據極值點定義可知,,代入不等式化簡變形后可知只需證明;構造函數,并求得,進而判斷的單調區間,由題意可知,并設,構造函數,并求得,即可判斷在內的單調性和最值,進而可得,即可由函數性質得,進而由單調性證明,即證明,從而證明原不等式成立.【詳解】(1)函數則,因為存在兩個極值點,,所以有兩個不等實根.設,所以.①當時,,所以在上單調遞增,至多有一個零點,不符合題意.②當時,令得,0減極小值增所以,即.又因為,,所以在區間和上各有一個零點,符合題意,綜上,實數的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因為,,所以.設,則,所以在上是增函數,在上是減函數.因為,不妨設,設,,則,當時,,,所以,所以在上是增函數,所以,所以,即.因為,所以,所以.因為,,且在上是減函數,所以,即,所以原命題成立,得證.【點睛】本題考查了利用導數研究函數的極值點,由導數證明不等式,構造函數法的綜合應用,極值點偏移證明不等式成立的應用,是高考的常考點和熱點,屬于難題.18.(1);(2)【解析】
試題分析:(1)根據余弦定理求出B,帶入條件求出,利用同角三角函數關系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據條件選擇正余弦定理,將問題轉化統一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.19.(1)(2)【解析】
(1)根據正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學生的計算能力.20.(1)見證明;(2)【解析】
(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.21.(1)見解析;(2)(﹣∞,0]【解析】
(1)利用導數求x<0時,f(x)的極大值為,即證(2)等價于k≤,x>0,令g(x)=,x>0,再求函數g(x)的最小值得解.【詳解】(1)∵函數f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)內遞增,在(﹣,0)內遞減,在(0,+∞)內遞增,∴f(x)的極大值為,∴當x<0時,f(x)≤(2)∵x2e/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信工程承包施工合同協議書
- 專業品牌策劃與推廣服務協議
- 特色農產品養殖與收購協議書
- 高一(上)化學階段檢測卷
- 《中世紀的歐洲經濟與文化發展高中歷史教案》
- 八步區總工會活動方案
- 公交公司元旦活動方案
- 公交廣告活動方案
- 畢業那一天初三作文800字10篇范文
- 公眾號視頻活動方案
- 《數據科學與大數據技術導論》完整版課件(全)
- 申請人申請仲裁送達信息確認書
- (完整版)生物同源性荷爾蒙替代療法課件
- 福建跨學科四門主干課程作業及答案小學語文
- 燃氣輸配課程設計報告書
- (高清正版)JJF 1908-2021 雙金屬溫度計校準規范
- 硬式內窺鏡項目計劃書_模板范本
- 房屋建筑工程安全防護指導圖集(防高墜篇)
- 皮內注射--ppt課件
- 機械原理課程設計半自動鉆床郭
- 雨林木風壁紙
評論
0/150
提交評論