第7章 第4講直線、平面平行的判定與性質 2021版高三數學(新高考)一輪復習課件共_第1頁
第7章 第4講直線、平面平行的判定與性質 2021版高三數學(新高考)一輪復習課件共_第2頁
第7章 第4講直線、平面平行的判定與性質 2021版高三數學(新高考)一輪復習課件共_第3頁
第7章 第4講直線、平面平行的判定與性質 2021版高三數學(新高考)一輪復習課件共_第4頁
第7章 第4講直線、平面平行的判定與性質 2021版高三數學(新高考)一輪復習課件共_第5頁
已閱讀5頁,還剩95頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第七章立體幾何第七章立體幾何第四講直線、平面平行的判定與性質第四講直線、平面平行的判定與性質1知識梳理?雙基自測2

考點突破?互動探究3

名師講壇?素養提升1知識梳理?雙基自測2考點突破?互動探究3知識梳理?

雙基自測知識梳理?雙基自測知識點一直線與平面平行的判定與性質a∥b

a∥α

a∥b

知識點一直線與平面平行的判定與性質a∥ba∥αa∥b知識點二面面平行的判定與性質知識點二面面平行的判定與性質1.垂直于同一條直線的兩個平面平行,即“若a⊥α,a⊥β,則α∥β”.2.垂直于同一個平面的兩條直線平行,即“若a⊥α,b⊥α,則a∥b”.3.平行于同一個平面的兩個平面平行,即“若α∥β,β∥γ,則α∥γ”.1.垂直于同一條直線的兩個平面平行,即“若a⊥α,a⊥β,則題組一走出誤區1.(多選題)下列結論正確的是(

)A.如果一個平面內的兩條直線平行于另一個平面,那么這兩個平面平行B.如果兩個平面平行,那么分別在這兩個平面內的兩條直線平行或異面C.若直線a與平面α內無數條直線平行,則a∥αD.若α∥β,直線a?α,則a∥βBD

題組一走出誤區BDD

D第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共題組三考題再現3.(2019·課標全國Ⅱ)設α,β為兩個平面,則α∥β的充要條件是(

)A.α內有無數條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面B

題組三考題再現B4.(2019·湖南長沙模擬)設a,b,c表示不同直線,α,β表示不同平面,給出下列命題:①若a∥c,b∥c,則a∥b;②若a∥b,b∥α,則a∥α;③若a∥α,b∥α,則a∥b;④若a?α,b?β,α∥β,則a∥b.其中真命題的個數是(

)A.1

B.2

C.3

D.4[解析]

只有①正確,故選A.A

4.(2019·湖南長沙模擬)設a,b,c表示不同直線,α,5.(2019·福建師大附中期中)設l,m是兩條不同的直線,α是一個平面,以下命題正確的是(

)A.若l∥α,m∥α,則l⊥m B.若l∥α,m⊥l,則m⊥αC.若l⊥α,m⊥l,則m∥α D.若l⊥α,m⊥α,則l∥m[解析]

若l∥α,m∥α,則l∥m或l與m相交或l與m異面;若l∥α,m⊥l,則m∥α或m與α相交;若l⊥α,m⊥l,則m∥α或m?α,∴A、B、C都錯,選D.D

5.(2019·福建師大附中期中)設l,m是兩條不同的直線,考點突破?

互動探究考點突破?互動探究考點一空間平行關系的基本問題——自主練透例1CD

考點一空間平行關系的基本問題——自主練透例1CD第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共〔變式訓練1〕(多選題)(2020·吉林省吉林市調研改編)如圖,正方體ABCD-A1B1C1D1中,E,F,G,H分別為所在棱的中點,則下列各直線、平面中,與平面ACD1平行的是(

)A.直線EF B.直線GHC.平面EHF D.平面A1BC1ABD

〔變式訓練1〕ABD[解析]

首先直線EF、GH、A1B都不在平面ACD1內,由中點及正方體的性質知EF∥AC,GH∥A1C1∥AC,A1B∥D1C,∴直線EF,GH,A1B都與平面ACD1平行,又A1C1∥AC,由面面平行判定易知平面A1BC1∥平面ACD1,由EH∥AB1,AB1∩平面ACD1=A,∴EH與平面ACD1相交,從而平面EHF與平面ACD1相交,∴C錯,故選A、B、D.[解析]首先直線EF、GH、A1B都不在平面ACD1內,由角度1線面平行的判定

(2019·遼寧撫順模擬)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD為梯形,AB∥CD,∠BAD=60°,PD=AD=AB=2,CD=4,E為PC的中點.(1)證明:BE∥平面PAD;(2)求三棱錐E-PBD的體積.考點二直線與平面平行的判定與性質——多維探究例2角度1線面平行的判定考點二直線與平面平行的判定與性質——第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共判斷或證明線面平行的常用方法(1)利用線面平行的定義(無公共點).(2)利用線面平行的判定定理(a?α,b?α,a∥b?a∥α).(3)利用面面平行的性質定理(α∥β,a?α?a∥β).(4)利用面面平行的性質(α∥β,a?β,a∥α?a∥β).注:線面平行的關鍵是線線平行,證明中常構造三角形中位線或平行四邊形.判斷或證明線面平行的常用方法例3例3第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共

如圖所示,在三棱柱ABC-A1B1C1中,E,F,G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1∥平面BCHG.考點三空間兩個平面平行的判定與性質——師生共研例4[證明]

(1)因為G,H分別是A1B1,A1C1的中點,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四點共面.如圖所示,在三棱柱ABC-A1B1C1中,E,F,G第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共[引申1]在本例條件下,若D為BC1的中點,求證:HD∥平面A1B1BA.[引申1]在本例條件下,若D為BC1的中點,求證:HD∥平面[引申2]在本例條件下,若D1,D分別為B1C1,BC的中點,求證:平面A1BD1∥平面AC1D.[引申2]在本例條件下,若D1,D分別為B1C1,BC的中點第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共證明面面平行的方法有(1)面面平行的定義.(2)面面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行.(3)利用“垂直于同一條直線的兩個平面平行”.(4)如果兩個平面同時平行于第三個平面,那么這兩個平面平行.(5)利用“線線平行”“線面平行”“面面平行”的相互轉化.證明面面平行的方法有第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共名師講壇?

素養提升名師講壇?素養提升平行中的探索性問題求解策略例5平行中的探索性問題求解策略例5第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共平行中的探索性問題(1)對命題條件的探索常采用以下三種方法:①先猜后證,即先觀察與嘗試給出條件再證明;②先通過命題成立的必要條件探索出命題成立的條件,再證明其充分性;③把幾何問題轉化為代數問題,探索命題成立的條件.(2)對命題結論的探索常采用以下方法:首先假設結論存在,然后在這個假設下進行推理論證,如果通過推理得到了合乎情理的結論,就肯定假設,如果得到了矛盾的結論,就否定假設.平行中的探索性問題〔變式訓練4〕在三棱柱ABC-A1B1C1的棱BC上是否存在一點H,使A1B∥平面AC1H?并證明.[解析]

BC上存在點H(即BC的中點)使A1B∥平面AC1H.證明如下:連A1C交AC1于O,則O為A1C的中點連HO,又H為BC的中點,∴HO∥A1B,又OH?平面AHC1,A1B?平面AHC1,∴A1B∥平面AC1H.〔變式訓練4〕第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第七章立體幾何第七章立體幾何第四講直線、平面平行的判定與性質第四講直線、平面平行的判定與性質1知識梳理?雙基自測2

考點突破?互動探究3

名師講壇?素養提升1知識梳理?雙基自測2考點突破?互動探究3知識梳理?

雙基自測知識梳理?雙基自測知識點一直線與平面平行的判定與性質a∥b

a∥α

a∥b

知識點一直線與平面平行的判定與性質a∥ba∥αa∥b知識點二面面平行的判定與性質知識點二面面平行的判定與性質1.垂直于同一條直線的兩個平面平行,即“若a⊥α,a⊥β,則α∥β”.2.垂直于同一個平面的兩條直線平行,即“若a⊥α,b⊥α,則a∥b”.3.平行于同一個平面的兩個平面平行,即“若α∥β,β∥γ,則α∥γ”.1.垂直于同一條直線的兩個平面平行,即“若a⊥α,a⊥β,則題組一走出誤區1.(多選題)下列結論正確的是(

)A.如果一個平面內的兩條直線平行于另一個平面,那么這兩個平面平行B.如果兩個平面平行,那么分別在這兩個平面內的兩條直線平行或異面C.若直線a與平面α內無數條直線平行,則a∥αD.若α∥β,直線a?α,則a∥βBD

題組一走出誤區BDD

D第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共題組三考題再現3.(2019·課標全國Ⅱ)設α,β為兩個平面,則α∥β的充要條件是(

)A.α內有無數條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面B

題組三考題再現B4.(2019·湖南長沙模擬)設a,b,c表示不同直線,α,β表示不同平面,給出下列命題:①若a∥c,b∥c,則a∥b;②若a∥b,b∥α,則a∥α;③若a∥α,b∥α,則a∥b;④若a?α,b?β,α∥β,則a∥b.其中真命題的個數是(

)A.1

B.2

C.3

D.4[解析]

只有①正確,故選A.A

4.(2019·湖南長沙模擬)設a,b,c表示不同直線,α,5.(2019·福建師大附中期中)設l,m是兩條不同的直線,α是一個平面,以下命題正確的是(

)A.若l∥α,m∥α,則l⊥m B.若l∥α,m⊥l,則m⊥αC.若l⊥α,m⊥l,則m∥α D.若l⊥α,m⊥α,則l∥m[解析]

若l∥α,m∥α,則l∥m或l與m相交或l與m異面;若l∥α,m⊥l,則m∥α或m與α相交;若l⊥α,m⊥l,則m∥α或m?α,∴A、B、C都錯,選D.D

5.(2019·福建師大附中期中)設l,m是兩條不同的直線,考點突破?

互動探究考點突破?互動探究考點一空間平行關系的基本問題——自主練透例1CD

考點一空間平行關系的基本問題——自主練透例1CD第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共〔變式訓練1〕(多選題)(2020·吉林省吉林市調研改編)如圖,正方體ABCD-A1B1C1D1中,E,F,G,H分別為所在棱的中點,則下列各直線、平面中,與平面ACD1平行的是(

)A.直線EF B.直線GHC.平面EHF D.平面A1BC1ABD

〔變式訓練1〕ABD[解析]

首先直線EF、GH、A1B都不在平面ACD1內,由中點及正方體的性質知EF∥AC,GH∥A1C1∥AC,A1B∥D1C,∴直線EF,GH,A1B都與平面ACD1平行,又A1C1∥AC,由面面平行判定易知平面A1BC1∥平面ACD1,由EH∥AB1,AB1∩平面ACD1=A,∴EH與平面ACD1相交,從而平面EHF與平面ACD1相交,∴C錯,故選A、B、D.[解析]首先直線EF、GH、A1B都不在平面ACD1內,由角度1線面平行的判定

(2019·遼寧撫順模擬)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD為梯形,AB∥CD,∠BAD=60°,PD=AD=AB=2,CD=4,E為PC的中點.(1)證明:BE∥平面PAD;(2)求三棱錐E-PBD的體積.考點二直線與平面平行的判定與性質——多維探究例2角度1線面平行的判定考點二直線與平面平行的判定與性質——第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共判斷或證明線面平行的常用方法(1)利用線面平行的定義(無公共點).(2)利用線面平行的判定定理(a?α,b?α,a∥b?a∥α).(3)利用面面平行的性質定理(α∥β,a?α?a∥β).(4)利用面面平行的性質(α∥β,a?β,a∥α?a∥β).注:線面平行的關鍵是線線平行,證明中常構造三角形中位線或平行四邊形.判斷或證明線面平行的常用方法例3例3第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共

如圖所示,在三棱柱ABC-A1B1C1中,E,F,G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1∥平面BCHG.考點三空間兩個平面平行的判定與性質——師生共研例4[證明]

(1)因為G,H分別是A1B1,A1C1的中點,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四點共面.如圖所示,在三棱柱ABC-A1B1C1中,E,F,G第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共[引申1]在本例條件下,若D為BC1的中點,求證:HD∥平面A1B1BA.[引申1]在本例條件下,若D為BC1的中點,求證:HD∥平面[引申2]在本例條件下,若D1,D分別為B1C1,BC的中點,求證:平面A1BD1∥平面AC1D.[引申2]在本例條件下,若D1,D分別為B1C1,BC的中點第7章第4講直線、平面平行的判定與性質2021版高三數學(新高考)一輪復習課件共證明面面平行的方法有(1)面面平行的定義.(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論