




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}2.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.23.已知函數的圖象如圖所示,則可以為()A. B. C. D.4.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.5.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.36.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.47.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.8.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.9.已知,滿足約束條件,則的最大值為A. B. C. D.10.已知,且,則的值為()A. B. C. D.11.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或12.已知集合,集合,那么等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y>0,且,則x+y的最小值為_____.14.設等比數列的前項和為,若,則數列的公比是.15.若的展開式中只有第六項的二項式系數最大,則展開式中各項的系數和是________.16.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.18.(12分)設函數.(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數的取值范圍.19.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin20.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點.(1)證明:;(2)求二面角的余弦值.21.(12分)在考察疫情防控工作中,某區衛生防控中心提出了“要堅持開展愛國衛生運動,從人居環境改善、飲食習慣、社會心理健康、公共衛生設施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習,提倡文明健康、綠色環保的生活方式”的要求.某小組通過問卷調查,隨機收集了該區居民六類日常生活習慣的有關數據.六類習慣是:(1)衛生習慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規律狀況類.經過數據整理,得到下表:衛生習慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規律狀況類有效答卷份數380550330410400430習慣良好頻率0.60.90.80.70.650.6假設每份調查問卷只調查上述六類狀況之一,各類調查是否達到良好標準相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調查結果是膳食合理狀況類中習慣良好者的概率;(2)從該區任選一位居民,試估計他在“衛生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣的概率;(3)利用上述六類習慣調查的排序,用“”表示任選一位第k類受訪者是習慣良好者,“”表示任選一位第k類受訪者不是習慣良好者().寫出方差,,,,,的大小關系.22.(10分)在銳角中,分別是角的對邊,,,且.(1)求角的大??;(2)求函數的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.【點睛】本題考查集合的交集運算,屬于基礎題.2、A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.3、A【解析】
根據圖象可知,函數為奇函數,以及函數在上單調遞增,且有一個零點,即可對選項逐個驗證即可得出.【詳解】首先對4個選項進行奇偶性判斷,可知,為偶函數,不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數進行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進行單調性判斷,在上單調遞減,不符合題意,排除C.故選:A.【點睛】本題主要考查圖象的識別和函數性質的判斷,意在考查學生的直觀想象能力和邏輯推理能力,屬于容易題.4、C【解析】
根據,兩邊平方,化簡得,再利用數量積定義得到求解.【詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數量積運算,屬于基礎題.5、D【解析】
在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.【點睛】本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.6、D【解析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.7、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.8、D【解析】
由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數的定義,誘導公式,二倍角公式的應用求值.9、D【解析】
作出不等式組對應的平面區域,利用目標函數的幾何意義,利用數形結合即可得到結論.【詳解】作出不等式組表示的平面區域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經過點時最大,所以,故選D.【點睛】本題主要考查線性規劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.10、A【解析】
由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.11、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.12、A【解析】
求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
處理變形x+y=x()+y結合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當且僅當時取等號,此時x=4,y=2,取得最小值1.故答案為:1【點睛】此題考查利用均值不等式求解最值,關鍵在于熟練掌握均值不等式的適用條件,注意考慮等號成立的條件.14、.【解析】
當q=1時,.當時,,所以.15、【解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數和.【詳解】由的展開式中只有第六項的二項式系數最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數和的求法,屬于基礎題.16、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時,根據絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數的取值范圍是【點睛】本題考查了絕對值不等式的解法與應用問題,也考查了函數絕對值三角不等式的應用問題,屬于常規題型.19、(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據余弦定理將cosB,cosC分別用邊表示,再根據正弦定理可以將sinAsinC轉化為ac,于是可以求出b的值;(2)首先根據sinB+3cosB=2求出角B的值,根據第(1)問得到的b值,可以運用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉化為2RsinA+2R試題解析:(1)由cosB應用余弦定理,可得a2化簡得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因為b=32得34又因為ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關系定理可知綜上a+c∈(考點:1.正、余弦定理;2.正弦型函數求值域;3.重要不等式的應用.20、(1)見解析;(2)【解析】
(1)取的中點,結合三角形中位線和長度關系,為平行四邊形,進而得到,根據線面平行判定定理可證得結論;(2)以,,為,,軸建立空間直角坐標系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據二面角為銳角確定最終二面角的余弦值;【詳解】(1)取的中點,連結,因為為中點,,,所以,,∴為平行四邊形,所以,又因為,所以;(2)由題及(1)易知,,兩兩垂直,所以以,,為,,軸建立空間直角坐標系,則,,,,,,易知面的法向量為設面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【點睛】本題考查立體幾何中直線與平面平行關系的證明、空間向量法求解二面角,正確求解法向量是解題的關鍵,屬于中檔題.21、(1)(2)(3)【解析】
(1)設“選取的試卷的調查結果是膳食合理狀況類中習慣良好者“的事件為,根據古典概型求出即可;/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中學教師資格考試題及答案
- 2025年人工智能與大數據創業能力考試題及答案
- 2025年數學建模與應用能力考試試卷及答案
- 2025年計算機網絡系統工程師考試試題及答案
- 2025年計算機應用基礎考試卷及答案
- 2025年健康管理與促進專業綜合考試試卷及答案
- 2025年財務審計的重要知識考試試題及答案
- 2025年兒童早期教育專業職業考試試卷及答案
- 2024年度浙江省護師類之主管護師考前沖刺模擬試卷A卷含答案
- 眼鏡行業人員培訓資料
- 入職申請登記表(模板)
- 生命科學導論(中國農業大學)智慧樹知到期末考試答案章節答案2024年中國農業大學
- 基礎護理學第七版已糾正附有答案
- 采礦學課程設計-潘三煤礦1
- 工貿企業環保相關知識培訓
- 2024屆內蒙古阿榮旗第一中學高一下化學期末統考模擬試題含解析
- 甲狀腺乳頭狀癌護理
- 茅臺銷售公司筆試題目答案
- 中醫診斷學中的慢性阻塞性肺疾病辨證
- 《膠原蛋白介紹》課件
- 安全檢查:從新手到專家的進階指南
評論
0/150
提交評論