




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若方程有唯一解,則實數的取值范圍是()A. B.C. D.2.如下的程序框圖的算法思路源于我國古代數學名著《九章算術》中的“更相減損術”.執行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.153.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.4.單位正方體ABCD-,黑、白兩螞蟻從點A出發沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.05.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.6.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面個數分別記為,則下列結論正確的是()A. B. C. D.7.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.8.已知函數,方程有四個不同的根,記最大的根的所有取值為集合,則“函數有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.設點,,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件10.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.11.已知橢圓,直線與直線相交于點,且點在橢圓內恒成立,則橢圓的離心率取值范圍為()A. B. C. D.12.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當的外接圓面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.14.在平面直角坐標系中,雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為________.15.已知函數是定義在上的奇函數,則的值為__________.16.的展開式中的常數項為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構成等比數列?若能,求出的方程,若不能,請說理由.18.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.19.(12分)已知函數,為的導數,函數在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.20.(12分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.21.(12分)在直角坐標系中,曲線的參數方程為(為參數).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.22.(10分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求出的表達式,畫出函數圖象,結合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據,,解得舍去),則的范圍是,故選:.【點睛】本題考查函數的零點問題,考查函數方程的轉化思想和數形結合思想,屬于中檔題.2.A【解析】
根據題意可知最后計算的結果為的最大公約數.【詳解】輸入的a,b分別為,,根據流程圖可知最后計算的結果為的最大公約數,按流程圖計算,,,,,,,易得176和320的最大公約數為16,故選:A.【點睛】本題考查的是利用更相減損術求兩個數的最大公約數,難度較易.3.A【解析】
利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質的應用,構建出的關系是解題的關鍵,考查計算能力,屬于中檔題.4.B【解析】
根據規則,觀察黑螞蟻與白螞蟻經過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質是到達哪個點以及計算白螞蟻爬完2020段后實質是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.5.A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.6.A【解析】
根據題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.7.B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.8.A【解析】
作出函數的圖象,得到,把函數有零點轉化為與在(2,4]上有交點,利用導數求出切線斜率,即可求得的取值范圍,再根據充分、必要條件的定義即可判斷.【詳解】作出函數的圖象如圖,由圖可知,,函數有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數零點的判定,考查數學轉化思想方法與數形結合的解題思想方法,訓練了利用導數研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.9.C【解析】
利用向量垂直的表示、向量數量積的運算,結合充分必要條件的定義判斷即可.【詳解】由于點,,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數量積的運算,屬于基礎題.10.C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.11.A【解析】
先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據恒在橢圓內列不等式,化簡后求得離心率的取值范圍.【詳解】設是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.12.A【解析】
點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學生的計算能力和應用能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,,所以,,,又二面角的大小為,則,,所以,設外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數形結合,建立關于球的半徑的方程,本題計算量較大,是一道難題.14.【解析】
求出雙曲線的右準線與漸近線的交點坐標,并將該交點代入拋物線的方程,即可求出實數的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準線方程為,漸近線方程為,所以,該雙曲線右準線與漸近線的交點為.由題意得,解得.故答案為:.【點睛】本題考查利用拋物線上的點求參數,涉及到雙曲線的準線與漸近線方程的應用,考查計算能力,屬于中等題.15.【解析】
先利用輔助角公式將轉化成,根據函數是定義在上的奇函數得出,從而得出函數解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數,則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數的化簡,三角函數的奇偶性和三角函數求值,考查了基本知識的應用能力和計算能力,是基礎題.16.【解析】
寫出展開式的通項公式,考慮當的指數為零時,對應的值即為常數項.【詳解】的展開式通項公式為:,令,所以,所以常數項為.
故答案為:.【點睛】本題考查二項展開式中指定項系數的求解,難度較易.解答問題的關鍵是,能通過展開式通項公式分析常數項對應的取值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)不能,理由見解析【解析】
(1)設,則,由此即可求出橢圓方程;(2)設直線的方程為,聯立直線與橢圓的方程可求得,則直線斜率為,設其方程為,聯立直線與橢圓方程,結合韋達定理可得關于對稱,可求得,假設存在直線滿足題意,設,可得,由此可得答案.【詳解】解:(1)設,則,,所以橢圓方程為;(2)設直線的方程為,與聯立得,∴,因為兩直線的傾斜角互補,所以直線斜率為,設直線的方程為,聯立整理得,,所以關于對稱,由正弦定理得,因為,所以,由上得,假設存在直線滿足題意,設,按某種排列成等比數列,設公比為,則,所以,則此時直線與平行或重合,與題意不符,所以不存在滿足題意的直線.【點睛】本題主要考查直線與橢圓的位置關系,考查計算能力與推理能力,屬于難題.18.(1)(2).【解析】
(1)利用離心率和橢圓經過的點建立方程組,求解即可.(2)把面積之比轉化為縱坐標之間的關系,聯立方程結合韋達定理可求.【詳解】解:(1)設焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點睛】本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數法,建立方程組進行求解,面積問題的合理轉化是求解的關鍵,側重考查數學運算的核心素養.19.(1)見解析;(2).【解析】
(1)對求導,令,求導研究單調性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉化利用均值不等式即得證;當,有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數,因為,,所以,存在使得,即.所以,當時,為減函數,當時,為增函數,故當時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當,即時,為的增函數,所以,,由(1)中,得,即.故滿足題意.②當,即時,有兩個不同的零點,,且,即,若時,為減函數,(*)若時,為增函數,所以的最小值為.注意到時,,且此時,(ⅰ)當時,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當時,,所以,所以由(*)知時,為減函數,所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點睛】本題考查了函數與導數綜合,考查了利用導數研究函數的最值和不等式的恒成立問題,考查了學生綜合分析,轉化劃歸,分類討論,數學運算能力,屬于較難題.20.(1)證明見解析;(2).【解析】
(1)要證面面垂直需要先證明線面垂直,即證明出平面即可;(2)求出點A到平面的距離,然后根據棱錐的體積公式即可求出四棱錐的體積.【詳解】(1)連接,由是平行四邊形及N是的中點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品疫苗安全管理制度
- 藥品采購議價管理制度
- 藥店企業文化管理制度
- 藥店異地刷卡管理制度
- 藥店設施設備管理制度
- 薪酬發放審批管理制度
- 設備公司銷售管理制度
- 設備安裝調試管理制度
- 設備機房資料管理制度
- 設備現場工具管理制度
- 市政公用工程設計文件編制深度規定(2013年高清版)
- GB/T 9867-2008硫化橡膠或熱塑性橡膠耐磨性能的測定(旋轉輥筒式磨耗機法)
- GB/T 19139-2012油井水泥試驗方法
- GB/T 18314-2001全球定位系統(GPS)測量規范
- 工貿行業重點可燃性粉塵目錄(2022版)
- 鐵道概論試題及答案重要
- 空間幾何中的平行與垂直 新高考 數學 一輪復習專項提升 精講精練
- 近代史期末復習試題
- 教學設計 完整版:Summer holiday plans
- 2022年武漢市法院書記員招聘考試題庫及答案解析
- DB34-T 4010-2021 水利工程外觀質量評定規程-高清現行
評論
0/150
提交評論