2022-2023學年云南省昆明市長城中學九年級數學上冊期末質量跟蹤監視試題含解析_第1頁
2022-2023學年云南省昆明市長城中學九年級數學上冊期末質量跟蹤監視試題含解析_第2頁
2022-2023學年云南省昆明市長城中學九年級數學上冊期末質量跟蹤監視試題含解析_第3頁
2022-2023學年云南省昆明市長城中學九年級數學上冊期末質量跟蹤監視試題含解析_第4頁
2022-2023學年云南省昆明市長城中學九年級數學上冊期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題3分,共30分)1.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數y=(k≠0,x>0)的圖象同時經過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為()A. B. C.3 D.52.如圖,螺母的一個面的外沿可以看作是正六邊形,這個正六邊形ABCDEF的半徑是2cm,則這個正六邊形的周長是()A.12 B.6 C.36 D.123.如果將拋物線向右平移1個單位,那么所得新拋物線的頂點坐標是()A. B. C. D.4.若關于的方程有兩個相等的實數根,則的值是()A.-1 B.-3 C.3 D.65.太陽與地球之間的平均距離約為150000000km,用科學記數法表示這一數據為()A.1.5×108km B.15×107km C.0.15×109km D.1.5×109km6.如圖,一次函數y1=x+b與一次函數y2=kx+4的圖象交于點P(1,3),則關于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<17.在△ABC中,∠C90°.若AB3,BC1,則的值為()A. B. C. D.8.在中,是邊上的點,,則的長為()A. B. C. D.9.拋物線的頂點坐標()A.(-3,4) B.(-3,-4) C.(3,-4) D.(3,4)10.如圖,在中,點,分別在,邊上,,,若,,則線段的長為()A. B. C. D.5二、填空題(每小題3分,共24分)11.已知a、b、c滿足,a、b、c都不為0,則=_____.12.用一張半徑為14cm的扇形紙片做一個如圖所示的圓錐形小丑帽子側面(接縫忽略不計),如果做成的圓錐形小丑帽子的底面半徑為10cm,那么這張扇形紙片的面積是________cm1.13.某校五個綠化小組一天的植樹的棵數如下:9,10,12,x,1.已知這組數據的平均數是10,那么這組數據的方差是_____.14.如圖,、是兩個等邊三角形,連接、.若,,,則__________.15.如圖,在中,,,以為直角邊、為直角頂點作等腰直角三角形,則______.16.若,則=_________.17.如圖,直線:()與,軸分別交于,兩點,以為邊在直線的上方作正方形,反比例函數和的圖象分別過點和點.若,則的值為______.18.若m+=3,則m2+=_____.三、解答題(共66分)19.(10分)如圖,已知菱形ABCD兩條對角線BD與AC的長之比為3:4,周長為40cm,求菱形的高及面積.20.(6分)(1)解方程:;(2)計算:.21.(6分)如圖,是直徑AB所對的半圓弧,點P是與直徑AB所圍成圖形的外部的一個定點,AB=8cm,點C是上一動點,連接PC交AB于點D.小明根據學習函數的經驗,對線段AD,CD,PD,進行了研究,設A,D兩點間的距離為xcm,C,D兩點間的距離為cm,P,D兩點之間的距離為cm.小明根據學習函數的經驗,分別對函數,隨自變量x的變化而變化的規律進行了探究.下面是小明的探究過程,請補充完整:(2)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了,與x的幾組對應值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65補充表格;(說明:補全表格時,相關數值保留兩位小數)(2)在同一平面直角坐標系中,描出補全后的表中各組數值所對應的點,并畫出函數的圖象:(3)結合函數圖象解決問題:當AD=2PD時,AD的長度約為___________.22.(8分)如圖,已知拋物線y=ax2+bx+5經過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.(1)求該拋物線的表達式;(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.23.(8分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).(1)求拋物線的解析式和直線AD的解析式;(2)過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.24.(8分)在二次函數的學習中,教材有如下內容:小聰和小明通過例題的學習,體會到利用函數圖象可以求出方程的近似解.于是他們嘗試利用圖象法探究方程的近似解,做法如下:請你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).25.(10分)計算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣126.(10分)若,且3a+2b﹣4c=9,求a+b﹣c的值是多少?

參考答案一、選擇題(每小題3分,共30分)1、B【分析】由已知,可得菱形邊長為5,設出點D坐標,即可用勾股定理構造方程,進而求出k值.【詳解】過點D做DF⊥BC于F,由已知,BC=5,∵四邊形ABCD是菱形,∴DC=5,∵BE=3DE,∴設DE=x,則BE=3x,∴DF=3x,BF=x,FC=5-x,在Rt△DFC中,DF2+FC2=DC2,∴(3x)2+(5-x)2=52,∴解得x=1,∴DE=1,FD=3,設OB=a,則點D坐標為(1,a+3),點C坐標為(5,a),∵點D、C在雙曲線上,∴1×(a+3)=5a,∴a=,∴點C坐標為(5,)∴k=.故選B.【點睛】本題是代數幾何綜合題,考查了數形結合思想和反比例函數k值性質.解題關鍵是通過勾股定理構造方程.2、D【分析】由正六邊形的性質證出△AOB是等邊三角形,由等邊三角形的性質得出AB=OA,即可得出答案【詳解】設正六邊形的中心為O,連接AO,BO,如圖所示:∵O是正六邊形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等邊三角形,∴AB=OA=2cm,∴正六邊形ABCDEF的周長=6AB=12cm.故選D【點睛】此題主要考查了正多邊形和圓、等邊三角形的判定與性質;根據題意得出△AOB是等邊三角形是解題關鍵.3、C【分析】根據拋物線的平移規律得出平移后的拋物線的解析式,即可得出答案.【詳解】解:由將拋物線y=3x2+2向右平移1個單位,得

y=3(x-1)2+2,

頂點坐標為(1,2),

故選:C.【點睛】本題考查了二次函數圖象與幾何變換,利用平移規律:左加右減,上加下減是解題關鍵.4、C【分析】根據方程有兩個相等的實數根,判斷出根的判別式為0,據此求解即可.【詳解】∵關于的方程有兩個相等的實數根,

∴,

解得:.故選:C.【點睛】本題考查了一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.5、A【解析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于150000000有9位,所以可以確定n=9-1=1.【詳解】150000000km=1.5×101km.故選:A.【點睛】此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.6、C【解析】試題分析:當x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數與一元一次不等式.7、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故選A.8、C【分析】先利用比例性質得到AD:AB=3:4,再證明△ADE∽△ABC,然后利用相似比可計算出AC的長.【詳解】解:解:∵AD=9,BD=3,

∴AD:AB=9:12=3:4,

∵DE∥BC,

∴△ADE∽△ABC,∴=,∵AE=6,∴AC=8,故選C.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形;在利用相似三角形的性質時主要利用相似比計算線段的長.9、D【解析】根據拋物線頂點式的特點寫出頂點坐標即可得.【詳解】因為是拋物線的頂點式,根據頂點式的坐標特點,頂點坐標為(3,4),故選D.【點睛】本題考查了拋物線的頂點,熟練掌握拋物線頂點式的特點是解題的關鍵.10、C【解析】設,,所以,易證,利用相似三角形的性質可求出的長度,以及,再證明,利用相似三角形的性質即可求出得出,從而可求出的長度.【詳解】解:設,,∴,∵,∴,∴,∴,∴,,∵,,∴,∵,∴,∴,設,,∴,∴,∴,∴,故選C.【點睛】本題考查相似三角形,解題的關鍵是熟練運用相似三角形的性質與判定,本題屬于中等題型.二、填空題(每小題3分,共24分)11、【解析】設則所以,故答案為:.12、110∏C㎡【解析】試題分析:∵圓錐的底面周長為10π,∴扇形紙片的面積=×10π×14=140πcm1.故答案為140π.考點:圓錐的計算.13、2【分析】首先根據平均數確定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],計算方差即可.【詳解】∵組數據的平均數是10,∴(9+10+12+x+1)=10,解得:x=11,∴S2=[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(1﹣10)2],=×(1+0+4+1+4),=2.故答案為:2.【點睛】本題考查了方差,一般地設n個數據,x1,x2,…xn的平均數為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.14、1【分析】連接AC,證明△ADC≌△BDE,則AC=BE,在Rt△ABC中,利用勾股定理可求解問題.【詳解】連接AC,根據等邊三角形的性質可知AD=BD,ED=CD,∠ADB=∠EDC=60°.∴∠ADC=∠BDE.∴△ADC≌△BDE(SAS).∴AC=BE.∵∠ABC=∠ABD+∠DBC=60°+30°=90°,∴在Rt△ABC中,利用勾股定理可得AC==1.故答案為:1.【點睛】本題主要考查了全等三角形的判定和性質、等邊三角形的性質、勾股定理,在應用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當輔助線構造三角形.15、1【分析】由于AD=AB,∠CAD=90°,則可將△ABD繞點A逆時針旋轉90°得△ABE,如圖,根據旋轉的性質得∠CAE=90°,AC=AE,BE=CD,于是可判斷△ACE為等腰直角三角形,則∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理計算出BE=1,從而得到CD=1.【詳解】解:∵△ADB為等腰直角三角形,∴AD=AB,∠BAD=90°,將△ACD繞點A順時針旋轉90°得△AEB,如圖,∴∠CAE=90°,AC=AE,CD=BE,∴△ACE為等腰直角三角形,∴∠ACE=45°,,∵∠ACB=45°,∴∠BCE=45°+45°=90°,在Rt△BCE中,,∴CD=1.故答案為1.【點睛】本題考查了旋轉的性質,等腰直角三角形的判定與性質,以及勾股定理等知識.旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.解決本題的關鍵的利用旋轉得到直角三角形CBE.16、【解析】根據分式的性質即可解答.【詳解】∵=1+=,∴=∴=【點睛】此題主要考查分式的性質,解題的關鍵是熟知分式的運算性質.17、-1【分析】作CH⊥y軸于點H,證明△BAO≌△CBH,可得OA=BH=-3b,OB=CH=-b,可得點C的坐標為(-b,-2b),點D的坐標為(2b,-3b),代入反比例函數的解析式,即可得出k2的值.【詳解】解:如圖,作CH⊥y軸于點H,

∵四邊形ABCD為正方形,

∴AB=BC,∠AOB=∠BHC=10°,∠ABC=10°

∴∠BAO=10°-∠OBA=∠CBH,

∴△BAO≌△CBH(AAS),

∴OA=BH,OB=CH,

∵直線l:(b<0)與x,y軸分別交于A,B兩點,

∴A(3b,0),B(0,b),

∵b<0,

∴BH=-3b,CH=-b,

∴點C的坐標為(-b,-2b),

同理,點D的坐標為(2b,-3b),

∵k1=3,

∴(-b)×(-2b)=3,即2b2=3,

∴k2=2b×(-3b)=-6b2=-1.

故答案為:-1.【點睛】本題考查反比例函數圖象上點的坐標的特征,直線與坐標軸的交點,正方形的性質,全等三角形的判定和性質.解題的關鍵是用b來表示出點C,D的坐標.18、7【解析】分析:把已知等式兩邊平方,利用完全平方公式化簡,即可求出答案.詳解:把m+=3兩邊平方得:(m+)2=m2++2=9,則m2+=7,故答案為:7點睛:此題考查了分式的混合運算,以及完全平方公式,熟練掌握運算法則及公式是解本題的關鍵.三、解答題(共66分)19、菱形的高是9.6cm,面積是96cm1.【解析】根據菱形的對角線互相垂直平分,利用勾股定理求出AC與BD的長,再由菱形面積公式求出所求即可.【詳解】解:∵BD:AC=3:4,∴設BD=3x,AC=4x,∴BO=,AO=1x,又∵AB1=BO1+AO1,∴AB=x,∵菱形的周長是40cm,∴AB=40÷4=10cm,即x=10,∴x=4,∴BD=11cm,AC=16cm,∴S?ABCD=BD?AC=×11×16=96(cm1),又∵S?ABCD=AB?h,∴h==9.6(cm),答:菱形的高是9.6cm,面積是96cm1.【點睛】此題考查了菱形的性質,勾股定理,熟練掌握菱形的性質是解本題的關鍵.20、(1);(2)-3【分析】(1)先依次寫出a、b、c的值,再求出△的值,最后代入公式計算即可;(2)分別計算特殊角的三角函數值和算術平方根,再依據有理數的混合運算計算即可.【詳解】解:(1):∵∴,∴,∴,即(2)原式=,.【點睛】本題考查利用公式法解一元二次方程,特殊角的三角函數值的混合運算和算術平方根.(1)中熟記一元二次方程的求根公式是解題關鍵;(2)中熟記特殊角的三角函數值是解題關鍵.21、(2)m=2.23;(2)見解析;(3)4.3【分析】(2)根據表格中的數據可得:當x=5或2時,y2=2.00,然后畫出圖形如圖,可得當與時,,過點P作PM⊥AB于M,然后根據等腰三角形的性質和勾股定理求出PM的長即得m的值;(2)用光滑的曲線依次連接各點即可;(3)由題意AD=2PD可得x=2y2,只要在函數y2的圖象上尋找橫坐標是縱坐標的2倍的點即可,然后結合圖象解答即可.【詳解】解:(2)由表格可知:當x=5或2時,y2=2.00,如圖,即當時,,時,,∴,過點P作PM⊥AB于M,則,則在Rt△中,,即當x=6時,m=2.23;(2)如圖:(3)由題意得:AD=2PD,即x=2y2,即在函數y2的圖象上尋找橫坐標是縱坐標的2倍的點即可,如圖,點Q的位置即為所求,此時,x≈4.3,即AD≈4.3.故答案為:4.3.【點睛】本題主要考查了函數圖象的規律、等腰三角形的性質、勾股定理和圓的有關知識,正確理解題意、把握題中的規律、熟練運用數形結合的思想方法是解題關鍵.22、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解析】(1)將點A、B坐標代入二次函數表達式,即可求出二次函數解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數表達式并解得:直線BC的表達式為:y=x+1,設點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標代入二次函數表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數表達式并解得:直線BC的表達式為:y=x+1…②,設點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設直線BP與CD交于點H,當點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,聯立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點P(﹣,﹣);當點P(P′)在直線BC上方時,∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達式為:y=2x+s,將點B坐標代入上式并解得:s=5,即直線BP′的表達式為:y=2x+5…⑥,聯立①⑥并解得:x=0或﹣4(舍去﹣4),故點P(0,5);故點P的坐標為P(﹣,﹣)或(0,5).【點睛】本題考查的是二次函數,熟練掌握拋物線的性質是解題的關鍵.23、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【分析】(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),代入拋物線解析式,即可得出結果.【詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設直線AD的解析式為y=kx

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論