2022年呼和浩特市重點中學數學高三第一學期期末經典試題含解析_第1頁
2022年呼和浩特市重點中學數學高三第一學期期末經典試題含解析_第2頁
2022年呼和浩特市重點中學數學高三第一學期期末經典試題含解析_第3頁
2022年呼和浩特市重點中學數學高三第一學期期末經典試題含解析_第4頁
2022年呼和浩特市重點中學數學高三第一學期期末經典試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形2.閱讀如圖的程序框圖,運行相應的程序,則輸出的的值為()A. B. C. D.3.已知方程表示的曲線為的圖象,對于函數有如下結論:①在上單調遞減;②函數至少存在一個零點;③的最大值為;④若函數和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④4.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.5.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.6.已知為虛數單位,若復數,,則A. B.C. D.7.已知函數,則不等式的解集是()A. B. C. D.8.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.9.已知函數,若關于的方程有4個不同的實數根,則實數的取值范圍為()A. B. C. D.10.已知集合,則()A. B. C. D.11.復數滿足,則復數等于()A. B. C.2 D.-212.已知函數,若恒成立,則滿足條件的的個數為()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值是______.14.將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有________種不同的放法.15.根據如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為____________.16.設實數,滿足,則的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.18.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.19.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.20.(12分)已知數列的前項和為,且點在函數的圖像上;(1)求數列的通項公式;(2)設數列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數的取值范圍;21.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)設直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.22.(10分)改革開放年,我國經濟取得飛速發展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.附:其中

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.2、C【解析】

根據給定的程序框圖,計算前幾次的運算規律,得出運算的周期性,確定跳出循環時的n的值,進而求解的值,得到答案.【詳解】由題意,,第1次循環,,滿足判斷條件;第2次循環,,滿足判斷條件;第3次循環,,滿足判斷條件;可得的值滿足以3項為周期的計算規律,所以當時,跳出循環,此時和時的值對應的相同,即.故選:C.【點睛】本題主要考查了循環結構的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規律是解答的關鍵,著重考查了推理與計算能力.3、C【解析】

分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數圖象的對稱性可知③錯誤;對于④,函數和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的圖象與性質,函數的零點概念,考查了數形結合的數學思想.4、A【解析】

由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.5、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.6、B【解析】

由可得,所以,故選B.7、B【解析】

由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.8、B【解析】

根據在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.9、C【解析】

求導,先求出在單增,在單減,且知設,則方程有4個不同的實數根等價于方程在上有兩個不同的實數根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數根,故,解得.故選:C.【點睛】本題考查確定函數零點或方程根個數.其方法:(1)構造法:構造函數(易求,可解),轉化為確定的零點個數問題求解,利用導數研究該函數的單調性、極值,并確定定義區間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數形結合求解;(2)定理法:先用零點存在性定理判斷函數在某區間上有零點,然后利用導數研究函數的單調性、極值(最值)及區間端點值符號,進而判斷函數在該區間上零點的個數.10、C【解析】

解不等式得出集合A,根據交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎題.11、B【解析】

通過復數的模以及復數的代數形式混合運算,化簡求解即可.【詳解】復數滿足,∴,故選B.【點睛】本題主要考查復數的基本運算,復數模長的概念,屬于基礎題.12、C【解析】

由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數,綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數,設(a),則(a)由導數的應用可得:(a)在為減函數,在,為增函數,則(a),即有一解,又,均為增函數,所以存在1個使得成立,綜合①②③得:滿足條件的的個數是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數研究函數的解得個數,重點考查了分類討論的數學思想方法,屬難度較大的題型.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】

做出滿足條件的可行域,根據圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數過點時取得最大值,聯立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區域,利用數形結合求線性目標函數的最值,屬于基礎題.14、【解析】

討論裝球盒子的個數,計算得到答案.【詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒子有球時:種.故共有種,故答案為:.【點睛】本題考查了排列組合的綜合應用,意在考查學生的理解能力和應用能力.15、【解析】

滿足條件執行,否則執行.【詳解】本題實質是求分段函數在處的函數值,當時,.故答案為:1【點睛】本題考查條件語句的應用,此類題要做到讀懂算法語句,本題是一道容易題.16、1【解析】

根據目標函數的解析式形式,分析目標函數的幾何意義,然后判斷求出目標函數取得最優解的點的坐標,即可求解.【詳解】作出實數,滿足表示的平面區域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時最大為1,故答案為:1.【點睛】本題主要考查線性規劃知識的運用,考查學生的計算能力,考查數形結合的數學思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)根據面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標系,則,,,,,,.設平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質應用,空間向量法求二面角的大小,屬于中檔題.18、(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據求出的值.最后直線與直線的方程聯立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的邏輯推理能力和運算能力,屬于難題.19、(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.20、(1)(2)當n為偶數時,;當n為奇數時,.(3)【解析】

(1)根據,討論與兩種情況,即可求得數列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數或偶數時的通項公式.也可利用數學歸納法,先猜想出通項公式,再用數學歸納法證明.(3)分類討論,當n為奇數或偶數時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當時,,當時,也滿足上式.所以.(2)解法一:由(1)可知,即.當時,,①當時,,所以,②當時,,③當時,,所以,④……當時,n為偶數當時,n為偶數所以以上個式子相加,得.又,所以當n為偶數時,.同理,當n為奇數時,,所以,當n為奇數時,.解法二:猜測:當n為奇數時,.猜測:當n為偶數時,.以下用數學歸納法證明:,命題成立;假設當時,命題成立;當n為奇數時,,當時,n為偶數,由得故,時,命題也成立.綜上可知,當n為奇數時同理,當n為偶數時,命題仍成立.(3)由(2)可知.①當n為偶數時,,所以隨n的增大而減小從而當n為偶數時,的最大值是.②當n為奇數時,,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對于任意的,不等式恒成立,只需,故實數的取值范圍是.【點睛】本題考查了累加法求數列通項公式的應用,分類討論奇偶項的通項公式及求和方法,數學歸納法證明數列的應用,數列的單調性及參數的取值范圍,屬于難題.21、(1):,:;(2)【解析】

(1)由直線參數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論