


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數學模擬測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.2.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.3.已知函數,若,則等于()A.-3 B.-1 C.3 D.04.設函數(,為自然對數的底數),定義在上的函數滿足,且當時,.若存在,且為函數的一個零點,則實數的取值范圍為()A. B. C. D.5.已知正項等比數列的前項和為,則的最小值為()A. B. C. D.6.設,滿足約束條件,則的最大值是()A. B. C. D.7.設集合,,則()A. B.C. D.8.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.9.已知向量,,若,則()A. B. C.-8 D.810.已知的內角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.11.設函數,則使得成立的的取值范圍是().A. B.C. D.12.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,且,則的最小值為___________.14.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.15.角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經過點P(1,2),則sin(π﹣α)的值是_____.16.已知過點的直線與函數的圖象交于、兩點,點在線段上,過作軸的平行線交函數的圖象于點,當∥軸,點的橫坐標是三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.18.(12分)在中,內角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.19.(12分)定義:若數列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數列”.(1)為“﹣數列”中的任意三項,則使得的取法有多少種?(2)為“﹣數列”中的任意三項,則存在多少正整數對使得且的概率為.20.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數學期望.21.(12分)(選修4-4:坐標系與參數方程)在平面直角坐標系,已知曲線(為參數),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.22.(10分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】
模擬程序框圖運行分析即得解.【題目詳解】;;.所以①處應填寫“”故選:B【答案點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.2、C【答案解析】
設出直線的方程,代入橢圓方程中消去y,根據判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【題目詳解】解:設直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【答案點睛】本題主要考查了橢圓的應用,直線與橢圓的關系.常需要把直線與橢圓方程聯立,利用韋達定理,判別式找到解決問題的突破口.3、D【答案解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數的解析式要滿足的關系.4、D【答案解析】
先構造函數,由題意判斷出函數的奇偶性,再對函數求導,判斷其單調性,進而可求出結果.【題目詳解】構造函數,因為,所以,所以為奇函數,當時,,所以在上單調遞減,所以在R上單調遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數的一個零點,所以在時有一個零點因為當時,,所以函數在時單調遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【答案點睛】本題主要考查函數與方程的綜合問題,難度較大.5、D【答案解析】
由,可求出等比數列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【題目詳解】設等比數列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.【答案點睛】本題考查等比數列的通項公式的求法,考查等比數列的性質,考查學生的計算求解能力,屬于中檔題.6、D【答案解析】
作出不等式對應的平面區域,由目標函數的幾何意義,通過平移即可求z的最大值.【題目詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【答案點睛】本題主要考查線性規劃的應用,利用數形結合是解決線性規劃題目的常用方法,屬于基礎題.7、A【答案解析】
解出集合,利用交集的定義可求得集合.【題目詳解】因為,又,所以.故選:A.【答案點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.8、B【答案解析】
先設直線與圓相切于點,根據題意,得到,再由,根據勾股定理求出,從而可得漸近線方程.【題目詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【答案點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于??碱}型.9、B【答案解析】
先求出向量,的坐標,然后由可求出參數的值.【題目詳解】由向量,,則,,又,則,解得.故選:B【答案點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.10、C【答案解析】
由,化簡得到的值,根據余弦定理和基本不等式,即可求解.【題目詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【答案點睛】本題主要考查了代數式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.11、B【答案解析】
由奇偶性定義可判斷出為偶函數,由單調性的性質可知在上單調遞增,由此知在上單調遞減,從而將所求不等式化為,解絕對值不等式求得結果.【題目詳解】由題意知:定義域為,,為偶函數,當時,,在上單調遞增,在上單調遞減,在上單調遞增,則在上單調遞減,由得:,解得:或,的取值范圍為.故選:.【答案點睛】本題考查利用函數的單調性和奇偶性求解函數不等式的問題;奇偶性的作用是能夠確定對稱區間的單調性,單調性的作用是能夠將函數值的大小關系轉化為自變量的大小關系,進而化簡不等式.12、C【答案解析】
不妨設在第一象限,故,根據得到,解得答案.【題目詳解】不妨設在第一象限,故,,即,即,解得,(舍去).故選:.【答案點睛】本題考查了橢圓的離心率,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
由,先將變形為,運用基本不等式可得最小值,再求的最小值,運用函數單調性即可得到所求值.【題目詳解】解:因為,,,且,所以因為,所以,當且僅當時,取等號,所以令,則,令,則,所以函數在上單調遞增,所以所以則所求最小值為故答案為:【答案點睛】此題考查基本不等式的運用:求最值,注意變形和滿足的條件:一正二定三相等,考查利用單調性求最值,考查化簡和運算能力,屬于中檔題.14、【答案解析】
利用即可建立關于的方程.【題目詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【答案點睛】本題考查求雙曲線的離心率,做此類題的關鍵是建立的方程或不等式,是一道容易題.15、【答案解析】
計算sinα,再利用誘導公式計算得到答案.【題目詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【答案點睛】本題考查了三角函數定義,誘導公式,意在考查學生的計算能力.16、【答案解析】
通過設出A點坐標,可得C點坐標,通過∥軸,可得B點坐標,于是再利用可得答案.【題目詳解】根據題意,可設點,則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【答案解析】
(1)取中點,連接,根據等腰三角形的性質得到,利用全等三角形證得,由此證得平面,進而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結合錐體體積公式,求得四面體的體積.【題目詳解】(1)證明:如圖,取中點,連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【答案點睛】本小題主要考查面面垂直的證明,考查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1).(2)【答案解析】
(1)利用正弦定理的邊角互化可得,再根據,利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【題目詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【答案點睛】本題主要考查了正弦定理解三角形、三角形的性質、兩角和的正弦公式,需熟記定理與公式,屬于基礎題.19、(1)16;(2)115.【答案解析】
(1)易得使得的情況只有“”,“”兩種,再根據組合的方法求解兩種情況分別的情況數再求和即可.(2)易得“”共有種,“”共有種.再根據古典概型的方法可知,利用組合數的計算公式可得,當時根據題意有,共個;當時求得,再根據換元根據整除的方法求解滿足的正整數對即可.【題目詳解】解:(1)三個數乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計數原理得:為“﹣數列”中的任意三項,則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數列”中任取三項共有種,根據古典概型有:,再根據組合數的計算公式能得到:,時,應滿足,,共個,時,應滿足,視為常數,可解得,,根據可知,,,,根據可知,,(否則),下設,則由于為正整數知必為正整數,,,化簡上式關系式可以知道:,均為偶數,設,則,由于中必存在偶數,只需中存在數為的倍數即可,,.檢驗:符合題意,共有個,綜上所述:共有個數對符合題意.【答案點睛】本題主要考查了排列組合的基本方法,同時也考查了組合數的運算以及整數的分析方法等,需要根據題意20、(1)(2)分布列見解析,期望為20【答案解析】
利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數學期望公式求解即可.【題目詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數學期望.【答案點睛】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應的概率是求解本題的關鍵;屬于中檔題、常考題型.21、(1)曲線:,直線的直角坐標方程;(2)1.【答案解析】試題分析:(1)先根據三角函數平方關系消參數得曲線化為普通方程,再根據將直線的極坐標方程化為直角坐標方程;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB62T 4011-2019 小麥品種 隴春30號
- 金融行業導師與新員工的師徒結對心得體會
- 吉林省舒蘭市第十八中學校2021-2022學年高一下學期期末考試化學試題
- 2025部編版小學語文二年級上冊教材信息技術應用心得體會
- DB62T 4063-2019 玉米品種 金凱2號
- 內鏡室財務管理人員崗位職責
- 物流公司合伙協議格式范文
- 廣告創意開發的標準流程
- 醫院內部疫情防控日常管理流程
- 廣告宣傳項目招標邀請函范文
- 滬教版初中數學八年級上冊知識點
- XXXX小區物業費欠費臺賬(自動更新到當前日期)
- Chinese Tea(中國茶)知到智慧樹章節測試課后答案2024年秋東北林業大學
- GB/T 9755-2024合成樹脂乳液墻面涂料
- 市政雨污水管排水工程監理實施細則
- 臺球店員工合同范例
- 我的家鄉廣西百色
- 程序文件-XXX(安全閥校驗機構)(2023版)
- 散糧裝卸工藝
- 中華人民共和國產品質量法培訓
- 餐廳干股分紅協議書
評論
0/150
提交評論