


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數學模擬測試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元2.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.83.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個4.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.5.雙曲線的漸近線方程為()A. B. C. D.6.設命題函數在上遞增,命題在中,,下列為真命題的是()A. B. C. D.7.已知復數滿足:(為虛數單位),則()A. B. C. D.8.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.9.直線與圓的位置關系是()A.相交 B.相切 C.相離 D.相交或相切10.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.11.執行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.712.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.14.已知函數,則曲線在處的切線斜率為________.15.為激發學生團結協作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經參加比賽的場次為__________.16.已知實數,對任意,有,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):若分數不低于95分,則稱該員工的成績為“優秀”.(1)從這20人中任取3人,求恰有1人成績“優秀”的概率;(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.組別分組頻數頻率1234①估計所有員工的平均分數(同一組中的數據用該組區間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績為“優秀”的人數,求的分布列和數學期望.18.(12分)如圖,直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點,直線y=p2與(1)求p的值;(2)設A是直線y=p2上一點,直線AM2交拋物線于另一點M3,直線M1M19.(12分)已知集合,.(1)若,則;(2)若,求實數的取值范圍.20.(12分)已知數列滿足,且.(1)求證:數列是等差數列,并求出數列的通項公式;(2)求數列的前項和.21.(12分)已知曲線的參數方程為(為參數).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.22.(10分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【題目詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【答案點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.2、B【答案解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【題目詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【答案點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.3、B【答案解析】
根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【題目詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【答案點睛】本題考查集合的運算以及集合子集個數的計算,當集合中有元素時,集合子集的個數為,真子集個數為,非空子集為,非空真子集為,屬基礎題.4、D【答案解析】
結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【題目詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【答案點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.5、C【答案解析】
根據雙曲線的標準方程,即可寫出漸近線方程.【題目詳解】雙曲線,雙曲線的漸近線方程為,故選:C【答案點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.6、C【答案解析】
命題:函數在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數單調性判斷出真假.【題目詳解】解:命題:函數,所以,當時,,即函數在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【答案點睛】本題考查了函數的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.7、A【答案解析】
利用復數的乘法、除法運算求出,再根據共軛復數的概念即可求解.【題目詳解】由,則,所以.故選:A【答案點睛】本題考查了復數的四則運算、共軛復數的概念,屬于基礎題.8、D【答案解析】
連接,根據題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【題目詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【答案點睛】本題考查向量的線性運算問題,屬于基礎題9、D【答案解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結論.【題目詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【答案點睛】本題主要考查直線與圓的位置關系,屬于基礎題.10、A【答案解析】
設所求切線的方程為,聯立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【題目詳解】設所求切線的方程為,則,聯立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區域的面積為,矩形的面積為,因此,所求概率為.故選:A.【答案點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數的切線方程的求解,考查計算能力,屬于中等題.11、C【答案解析】
根據程序框圖程序運算即可得.【題目詳解】依程序運算可得:,故選:C【答案點睛】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.12、D【答案解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【題目詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【答案點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【題目詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【答案點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.14、【答案解析】
求導后代入可構造方程求得,即為所求斜率.【題目詳解】,,解得:,即在處的切線斜率為.故答案為:.【答案點睛】本題考查切線斜率的求解問題,考查導數的幾何意義,屬于基礎題.15、2【答案解析】
根據比賽場次,分析,畫出圖象,計算結果.【題目詳解】畫圖所示,可知目前(五)班已經賽了2場.故答案為:2【答案點睛】本題考查推理,計數原理的圖形表示,意在考查數形結合分析問題的能力,屬于基礎題型.16、-1【答案解析】
由二項式定理及展開式系數的求法得,又,所以,令得:,所以,得解.【題目詳解】由,且,則,又,所以,令得:,所以,故答案為:.【答案點睛】本題考查了二項式定理及展開式系數的求法,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①82,②分布列見解析,【答案解析】
(1)從20人中任取3人共有種結果,恰有1人成績“優秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【題目詳解】(1)設從20人中任取3人恰有1人成績“優秀”為事件,則,所以,恰有1人“優秀”的概率為.(2)組別分組頻數頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優秀”的概率為,∴;;;;∴的分布列為0123∵,∴數學期望.【答案點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數的估計值等知識,是一道容易題.18、(1)p=4;(2)OA?【答案解析】試題分析:(1)聯立直線的方程和拋物線的方程y=2x-2x2=2py,化簡寫出根與系數關系,由于直線y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入點的坐標化簡得4-(2+p2)?x試題解析:(1)由y=2x-2x2=2py設M1(x1,因為直線y=p2平分∠M所以y1-p所以4-(2+p2)?x1+x(2)由(1)知拋物線方程為x2=8y,且x1+x設M3(x3,x328所以x2+x整理得:x2由B,M3,②式兩邊同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA?考點:直線與圓錐曲線的位置關系.【方法點晴】本題考查直線與拋物線的位置關系.閱讀題目后明顯發現,所有的點都是由直線和拋物線相交或者直線與直線相交所得.故第一步先聯立y=2x-2x2=2py,相當于得到M1,M2的坐標,但是設而不求.根據直線y=p219、(1);(2)【答案解析】
(1)將代入可得集合B,解對數不等式可得集合A,由并集運算即可得解.(2)由可知B為A的子集,即;當符合題意,當B不為空集時,由不等式關系即可求得的取值范圍.【題目詳解】(1)若,則,依題意,故;(2)因為,故;若,即時,,符合題意;若,即時,,解得;綜上所述,實數的取值范圍為.【答案點睛】本題考查了集合的并集運算,由集合的包含關系求參數的取值范圍,注意討論集合是否為空集的情況,屬于基礎題.20、(1)證明見解析,;(2).【答案解析】
(1)將等式變形為,進而可證明出是等差數列,確定數列的首項和公差,可求得的表達式,進而可得出數列的通項公式;(2)利用錯位相減法可求得數列的前項和.【題目詳解】(1)因為,所以,即,所以數列是等差數列,且公差,其首項所以,解得;(2),①,②①②,得,所以.【答案點睛】本題考查利用遞推公式證明等差數列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.21、(1)見解析;(2).【答案解析】試題分析:(1)利用平方法消去參數,即可得到的普通方程,兩邊同乘以利用即可得的直角坐標方程;(2)設直線的參數方程為(為參數),代入,利用韋達定理、直線參數方程的幾何意義以及三角函數的有界性可得結果.試題解析:(1)曲線的普通方程為,曲線的直角坐標方程為;(2)設直線的參數方程為(為參數)又直線與曲線:存在兩個交點,因此.聯立直線與曲線:可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拼多多店鋪數據化運營實踐分享
- 提升企業競爭力的組織創新策略
- 影視產業與網絡傳播新動向
- 教育政策執行中的教育機會均等性研究
- 招生市場分析與目標用戶定位
- 患者體驗在醫院服務中的重要性
- 中藥公司風險管理制度
- 鄉村環境衛生管理制度
- 倉庫三防安全管理制度
- 不同顧客分級管理制度
- 汽車快修連鎖加盟商業計劃書
- DB33T 1376-2024鄉鎮(街道)應急消防管理站建設與運行規范
- 七年級生物上冊1.1.1形形色色的生物
- 2025年糧油倉儲管理員(高級)職業技能鑒定參考試題庫(含答案)
- 2022比亞迪員工手冊
- 元宇宙技術與應用知到課后答案智慧樹章節測試答案2025年春中國科學技術大學
- 中國參與國際通信海纜建設和保護相關情況報告
- 2025年中國車載逆變電源市場調查研究報告001
- 專題02 陸地和海洋-2025年會考地理知識點梳理(背誦版)
- 廣東省2025年普通高中學業水平合格性考試地理模擬卷一(附答案解析)
- 2024年高級經濟師《工商管理》考試真題
評論
0/150
提交評論