




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數滿足,且在上是增函數,不等式對于恒成立,則的取值范圍是A. B. C. D.2.已知集合,則=A. B. C. D.3.已知函數,若所有點,所構成的平面區域面積為,則()A. B. C.1 D.4.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.5.已知,滿足約束條件,則的最大值為A. B. C. D.6.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.7.已知變量x,y間存在線性相關關系,其數據如下表,回歸直線方程為,則表中數據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.58.已知復數是正實數,則實數的值為()A. B. C. D.9.下列函數中,圖象關于軸對稱的為()A. B.,C. D.10.若復數滿足,則()A. B. C.2 D.11.已知函數滿足,且,則不等式的解集為()A. B. C. D.12.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則的值為______.14.若實數,滿足,則的最小值為__________.15.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.16.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調整眼及頭部的血液循環,調節肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數成等差數列,試估計全年級視力在5.0以上的人數;(2)為了研究學生的視力與眼保健操是否有關系,對年級不做眼保健操和堅持做眼保健操的學生進行了調查,得到下表中數據,根據表中的數據,能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關系?(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數為X,求X的分布列和數學期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87918.(12分)已知函數和的圖象關于原點對稱,且.(1)解關于的不等式;(2)如果對,不等式恒成立,求實數的取值范圍.19.(12分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設直線l與曲線C相交于A,B兩點,且,求r的值.20.(12分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.21.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數的取值范圍.22.(10分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據奇偶性定義和性質可判斷出函數為偶函數且在上是減函數,由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數,圖象關于軸對稱又在上是增函數在上是減函數,即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數的奇偶性和單調性求解函數不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數單調性將函數值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.2、C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數學運算素養.采取數軸法,利用數形結合的思想解題.【詳解】由題意得,,則.故選C.【點睛】不能領會交集的含義易致誤,區分交集與并集的不同,交集取公共部分,并集包括二者部分.3、D【解析】
依題意,可得,在上單調遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調遞增,則在上的值域為,因為所有點所構成的平面區域面積為,所以,解得,故選:D.【點睛】本題考查利用導數研究函數的單調性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.4、B【解析】
根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.5、D【解析】
作出不等式組對應的平面區域,利用目標函數的幾何意義,利用數形結合即可得到結論.【詳解】作出不等式組表示的平面區域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經過點時最大,所以,故選D.【點睛】本題主要考查線性規劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.6、D【解析】
設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.7、A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.8、C【解析】
將復數化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數,所以且,解得.故選:C【點睛】本題考查復數的基本定義,屬基礎題.9、D【解析】
圖象關于軸對稱的函數為偶函數,用偶函數的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數為偶函數;A中,,,故為奇函數;B中,的定義域為,不關于原點對稱,故為非奇非偶函數;C中,由正弦函數性質可知,為奇函數;D中,且,,故為偶函數.故選:D.【點睛】本題考查判斷函數奇偶性.判斷函數奇偶性的兩種方法:(1)定義法:對于函數的定義域內任意一個都有,則函數是奇函數;都有,則函數是偶函數(2)圖象法:函數是奇(偶)函數函數圖象關于原點(軸)對稱.10、D【解析】
把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法.11、B【解析】
構造函數,利用導數研究函數的單調性,即可得到結論.【詳解】設,則函數的導數,,,即函數為減函數,,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數研究函數單調性,根據函數的單調性解不等式,考查學生分析問題解決問題的能力,是難題.12、D【解析】
先根據向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求,再根據的范圍求出即可.【詳解】由題可知,故.故答案為:.【點睛】本題考查分段函數函數值的求解,涉及對數的運算,屬基礎題.14、【解析】
由約束條件先畫出可行域,然后求目標函數的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當平行線經過點時取到最小值,由可得,此時,所以的最小值為.故答案為.【點睛】本題考查了線性規劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標函數,結合圖形求出最值,需要掌握解題方法.15、【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.16、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系(3)詳見解析【解析】
(1)由題意可計算后三組的頻數的總數,由其成等差數列可得后三組頻數,可得視力在5.0以上的頻率,可得全年級視力在5.0以上的的人數;(2)由題中數據計算的值,對照臨界值表可得答案;(3)由題意可計算出這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,可得X可取0,1,2,分別計算出其概率,列出分布列,可得其數學期望.【詳解】解:(1)由圖可知,第一組有3人,第二組7人,第三組27人,因為后三組的頻數成等差數列,共有(人)所以后三組頻數依次為24,21,18,所以視力在5.0以上的頻率為0.18,故全年級視力在5.0以上的的人數約為人(2),因此能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系.(3)調查的100名學生中不近視的共有24人,從中抽取8人,抽樣比為,這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,X可取0,1,2,,X的分布列X012PX的數學期望.【點睛】本題主要考查頻率分布直方圖,獨立性檢測及離散型隨機變量的期望與方差等相關知識,考查學生分析數據與處理數據的能力,屬于中檔題.18、(1)(2)【解析】試題分析:(1)由函數和的圖象關于原點對稱可得的表達式,再去掉絕對值即可解不等式;(2)對,不等式成立等價于,去絕對值得不等式組,即可求得實數的取值范圍.試題解析:(1)∵函數和的圖象關于原點對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.19、【解析】
先將曲線C和直線l的極坐標方程化為直角坐標方程,可得圓心到直線的距離,再由勾股定理,計算即得.【詳解】以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,可得曲線C:()的直角坐標方程為,表示以原點為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點睛】本題考查曲線和直線的極坐標方程化為直角坐標方程,是基礎題.20、(1)1(2)1【解析】分析:(1)當時可得,可得.(2)先得到關系式,累乘可得,從而可得,即為定值.詳解:(1)當時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數的有關運算,解題時要注意所給出的的定義,并結合組合數公式求解.由于運算量較大,解題時要注意運算的準確性,避免
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《一年級下冊語文園地四》課件
- 萊鋼海綿鐵水再循環裝配計劃
- 超市連鎖-連鎖店的原理及其在零售業發展中的作用培訓教材 102
- 解析幾何基礎綜合-教師版教案
- 湖北省云學名校聯盟2024-2025學年高二下學期期中聯考生物試卷(有答案)
- 北師大小學數學(2024)三年級上冊第二單元 測量(二) 綜合素養測評卷(含答案)
- 幼兒小班閱讀書本帳篷教案
- 幼兒園《早期閱讀繪本》課件
- Whats the matter單元過關測試
- 大班幼兒在科學教育中探究能力的培養目標
- 2024年西部機場集團青海機場有限公司招聘筆試參考題庫含答案解析
- 李辛演講-現代人的壓力與管理
- 自評報告中如何展示自己在疾病防控和公共衛生方面的能力
- 基于人工智能的CAD模型自動生成技術研究
- 無憂傳媒商業計劃書
- 【物流運輸合同】公司物流運輸合同
- 建設施工隱患判定和標準化檢查清單
- (完整)仰斜式擋土墻計算圖(斜基礎)
- 熱軋帶鋼板形控制
- 中國全部城市名及拼音
- 歷史九年級上冊第五單元《走向近代》作業設計 單元作業設計
評論
0/150
提交評論