江蘇省大豐區金豐路初級中學2021-2022學年中考猜題數學試卷含解析_第1頁
江蘇省大豐區金豐路初級中學2021-2022學年中考猜題數學試卷含解析_第2頁
江蘇省大豐區金豐路初級中學2021-2022學年中考猜題數學試卷含解析_第3頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.我國古代數學名著《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.2.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定3.如圖是由若干個小正方體塊搭成的幾何體的俯視圖,小正方塊中的數字表示在該位置的小正方體塊的個數,那么這個幾何體的主視圖是()A. B. C. D.4.某排球隊名場上隊員的身高(單位:)是:,,,,,.現用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數變小,方差變小 B.平均數變小,方差變大C.平均數變大,方差變小 D.平均數變大,方差變大5.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數式中,能構成完全平方式的概率是()A.1B.12C.136.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點D,交BC于點E,則△ACE的周長為()A.2+ B.2+2 C.4 D.37.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元8.小穎隨機抽樣調查本校20名女同學所穿運動鞋尺碼,并統計如表:尺碼/cm21.522.022.523.023.5人數24383學校附近的商店經理根據統計表決定本月多進尺碼為23.0cm的女式運動鞋,商店經理的這一決定應用的統計量是()A.平均數 B.加權平均數 C.眾數 D.中位數9.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.10.下列命題中,正確的是()A.菱形的對角線相等B.平行四邊形既是軸對稱圖形,又是中心對稱圖形C.正方形的對角線不能相等D.正方形的對角線相等且互相垂直二、填空題(本大題共6個小題,每小題3分,共18分)11.已知:如圖,矩形ABCD中,AB=5,BC=3,E為AD上一點,把矩形ABCD沿BE折疊,若點A恰好落在CD上點F處,則AE的長為_____.12.分解因式:____________.13.經過兩次連續降價,某藥品銷售單價由原來的50元降到32元,設該藥品平均每次降價的百分率為x,根據題意可列方程是__________________________.14.一個長方體的三視圖如圖所示,若其俯視圖為正方形,則這個長方體的體積為______.15.如圖,反比例函數y=(x<0)的圖象經過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經軸對稱變換得到的點B'在此反比例函數的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+16.關于x的分式方程=2的解為正實數,則實數a的取值范圍為_____.三、解答題(共8題,共72分)17.(8分)數學活動小組的小穎、小明和小華利用皮尺和自制的兩個直角三角板測量學校旗桿MN的高度,如示意圖,△ABC和△A′B′C′是他們自制的直角三角板,且△ABC≌△A′B′C′,小穎和小明分別站在旗桿的左右兩側,小穎將△ABC的直角邊AC平行于地面,眼睛通過斜邊AB觀察,一邊觀察一邊走動,使得A、B、M共線,此時,小華測量小穎距離旗桿的距離DN=19米,小明將△A′B′C′的直角邊B′C′平行于地面,眼睛通過斜邊B′A′觀察,一邊觀察一邊走動,使得B′、A′、M共線,此時,小華測量小明距離旗桿的距離EN=5米,經測量,小穎和小明的眼睛與地面的距離AD=1米,B′E=1.5米,(他們的眼睛與直角三角板頂點A,B′的距離均忽略不計),且AD、MN、B′E均與地面垂直,請你根據測量的數據,計算旗桿MN的高度.18.(8分)如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.19.(8分)在數學課上,老師提出如下問題:小楠同學的作法如下:老師說:“小楠的作法正確.”請回答:小楠的作圖依據是______________________________________________.20.(8分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.21.(8分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)22.(10分)計算:.23.(12分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.24.解方程組:.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

設大馬有x匹,小馬有y匹,根據題意可得等量關系:①大馬數+小馬數=100;②大馬拉瓦數+小馬拉瓦數=100,根據等量關系列出方程組即可.【詳解】解:設大馬有x匹,小馬有y匹,由題意得:,故選C.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.2、C【解析】

因為R不動,所以AR不變.根據三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.3、B【解析】

根據俯視圖可確定主視圖的列數和每列小正方體的個數.【詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個小正方體組成,右邊一列由3個小正方體組成.故答案選B.【點睛】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.4、A【解析】分析:根據平均數的計算公式進行計算即可,根據方差公式先分別計算出甲和乙的方差,再根據方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數為==188,方差為S2==;換人后6名隊員身高的平均數為==187,方差為S2==∵188>187,>,∴平均數變小,方差變小,故選:A.點睛:本題考查了平均數與方差的定義:一般地設n個數據,x1,x2,…xn的平均數為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.5、B【解析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.6、B【解析】分析:根據線段垂直平分線的性質,把三角形的周長問題轉化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長=AC+AE+CE=AC+BC=2+2,故選B.點睛:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.7、A【解析】

設這種商品每件進價為x元,根據題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數,根據題中的等量關系列出正確的方程.8、C【解析】

根據眾數是一組數據中出現次數最多的數,可能不止一個,對這個鞋店的經理來說,他最關注的是數據的眾數.【詳解】解:根據商店經理統計表決定本月多進尺碼為23.0cm的女式運動鞋,就說明穿23.0cm的女式運動鞋的最多,

則商店經理的這一決定應用的統計量是這組數據的眾數.

故選:C.【點睛】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的平均數、中位數、眾數各有局限性,因此要對統計量進行合理的選擇和恰當的運用.9、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.10、D【解析】

根據菱形,平行四邊形,正方形的性質定理判斷即可.【詳解】A.菱形的對角線不一定相等,A錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,B錯誤;C.正方形的對角線相等,C錯誤;D.正方形的對角線相等且互相垂直,D正確;故選:D.【點睛】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

根據矩形的性質得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根據折疊得到BF=AB=5,EF=EA,根據勾股定理求出CF,由此得到DF的長,再根據勾股定理即可求出AE.【詳解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折疊的性質可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,設AE=x,則EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案為:.【點睛】此題考查矩形的性質,勾股定理,折疊的性質,由折疊得到BF的長度是解題的關鍵.12、【解析】試題分析:根據因式分解的方法,先提公因式,再根據平方差公式分解:.考點:因式分解13、50(1﹣x)2=1.【解析】由題意可得,50(1?x)2=1,故答案為50(1?x)2=1.14、1.【解析】試題解析:設俯視圖的正方形的邊長為.∵其俯視圖為正方形,從主視圖可以看出,正方形的對角線長為∴解得∴這個長方體的體積為4×3=1.15、A【解析】

根據反比例函數圖象上點的坐標特征由A點坐標為(-2,2)得到k=-4,即反比例函數解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標為(-2,2),∴k=-2×2=-4,∴反比例函數解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數的綜合題,解決本題要掌握反比例函數圖象上點的坐標特征、等腰直角三角形的性質和軸對稱的性質及會用求根公式法解一元二次方程.16、a<2且a≠1【解析】

將a看做已知數,表示出分式方程的解,根據解為非負數列出關于a的不等式,求出不等式的解集即可得到a的范圍.【詳解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解為正實數,∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案為:a<2且a≠1.【點睛】分式方程的解.三、解答題(共8題,共72分)17、11米【解析】

過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,根據相似三角形的性質即可得到結論.【詳解】解:過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴AEMF∴19MF∴MF=192∵NF=B'E=1.5,MN=MF+NF,∴MN=MF+B'E=19答:旗桿MN的高度約為11米.【點睛】本題考查了相似三角形的應用,正確的作出輔助線是解題的關鍵.18、(1)證明見解析;(2).【解析】

(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;

(2)設圓的半徑為r,利用銳角三角函數定義求出AB的長,再利用勾股定理列出關于r的方程,求出方程的解即可得到結果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設圓的半徑為,在中,,根據勾股定理得:,,在中,,,根據勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質,以及勾股定理,熟練掌握切線的判定與性質是解本題的關鍵.19、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.【解析】

根據對角線互相平分的四邊形是平行四邊形可判斷四邊形ABCP為平行四邊形,再根據平行四邊形的性質:對角線互相平分即可得到BD=CD,由此可得到小楠的作圖依據.【詳解】解:由作圖的步驟可知平行四邊形可判斷四邊形ABCP為平行四邊形,再根據平行四邊形的性質:對角線互相平分即可得到BD=CD,所以小楠的作圖依據是:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定和性質.20、(1)證明見解析;(2)BC=1.【解析】

(1)連接OB,根據切線的性質和圓周角定理求出∠PBO=∠ABC=90°,即可求出答案;

(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【詳解】(1)連接OB,∵PB是⊙O的切線,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直徑,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;(2)∵⊙O的半徑是3,∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,∴=,∴BC=1.【點睛】本題考查平行線的性質,切線的性質,相似三角形的性質和判定,圓周角定理等知識點,能綜合運用知識點進行推理是解題關鍵.21、見解析【解析】

三角形的面積相等即同底等高,所以以BC為兩個三角形的公共底邊,在AC邊上尋找到與D到BC距離相等的點即可.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論