




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Good is good, but better carries it.精益求精,善益求善。MATLAB的根軌跡分析法及重點習題-4.1某系統的結構如題4-1圖所示,試求單位階躍響應的調節時間ts,若要求ts=0.1秒,系統的反饋系數應調整為多少?解:(1)由系統結構圖可知系統閉環傳遞函數為:在單位階躍函數作用下系統輸出為:為求系統單位階躍響應,對C(s)進行拉斯反變換:根據定義調節時間等于響應曲線進入5%誤差帶,并保持在此誤差帶內所需要的最短時間,且根據響應系統單位階躍響應的函數表達式可以看出系統單位階躍響應的穩態值為,因此:(2)若要求ts=0.1秒,則有:即:若要求調節時間縮小為0.1秒
2、,則需將反饋環節的反饋系數調整為0.3。4.2已知二階系統的階躍響應曲線如題4.2圖所示,該系統為單位負反饋系統,試確定其開環傳遞函數。解:根據系統階躍響應曲線可以看出:峰值時間,超調量;根據課本中對典型二階系統暫態性能指標的推導計算可知:結合本題已知階躍響應曲線可知:由式(2)可知:將帶入式(1)中可得:回顧題意對于典型二階系統其閉環傳遞函數為,且系統為單位負反饋系統,所以系統開環傳遞函數和閉環傳遞函數之間滿足如下關系:4.3單位反饋控制系統開環傳遞函數為,若,試求(1)動態性能指標.(2)欲使,當T不變時,K應取何值。解:(1)對于單位反饋控制系統,已知開環傳遞函數可求出其閉環傳遞函數,并
3、將其化為標準形式為:所以根據動態性能指標的計算公式將上述兩參數帶入后可得:(2)由于T=0.25s,所以可知:,將阻尼比帶入超調量的計算公式中:4.4設控制系統如題4-4圖所示,其中圖(a)為無速度反饋系統,圖(b)為帶速度反饋系統,試確定系統阻尼比為0.5時Kt的值,并比較圖(a)和圖(b)系統階躍響應的動態性能指標。解:(1)根據系統結構圖可求得兩系統的閉環傳遞函數為:(2)根據已經求得的兩系統的阻尼比和無阻尼自然振蕩角頻率可分別計算兩系統的動態性能指標:經對比可看出:采用速度反饋的b系統雖然上升時間和峰值時間稍有延長,但超調量存在明顯下降,系統振蕩劇烈程度下降,另外調節時間也顯著降低,即
4、使說系統能夠在較快的時間內達到穩定,系統動態性能得到了提高。4.5某系統結構如題4-5圖所示,試判斷系統的穩定性。解:根據系統結構圖可利用梅森公式求解其傳遞函數,結構圖中前向通道有一條,回路有兩個,且兩回路相關,因此有:因此可得系統特征方程為:列寫其勞斯表為:根據勞斯判據可知,勞斯表第一列系數符號均未發生變化,因此系統穩定。4.6已知系統特征方程如下,用勞斯判據判斷系統的穩定性,如不穩定求在s右半平面的根數及虛根值。另外用MATLAB軟件直接求其特征跟加以驗證。(1)通過分析勞斯表中第一列系數可知并沒有符號變化,所以不存在位于s右半平面的特征根,另外由于系統勞斯表中出現全零行,所以系統不穩定,
5、存在對稱于原點的根為用MATLAB軟件中函數roots求特征方程根可得,系統特征方程根為如下所示,進一步驗證了上述求解結果的正確性。(2)通過分析勞斯表中第一列系數可知并沒有符號變化,所以不存在位于s右半平面的特征根,另外由于系統勞斯表中出現全零行,所以系統不穩定,存在對稱于原點的根為用MATLAB軟件中函數roots求特征方程根可得,系統特征方程根為如下所示,進一步驗證了上述求解結果的正確性。(3)通過分析勞斯表中第一列系數符號變化兩次,所以有兩個位于s右半平面的特征根,另外由于系統勞斯表中出現全零行,所以系統不穩定,存在對稱于原點的根為用MATLAB軟件中函數roots求特征方程根可得,系
6、統特征方程根為如下所示,進一步驗證了上述求解結果的正確性。(4)通過分析勞斯表中第一列系數符號變化1次,所以有1個位于s右半平面的特征根,另外由于系統勞斯表中出現全零行,所以系統不穩定,存在對稱于原點的根為用MATLAB軟件中函數roots求特征方程根可得,系統特征方程根為如下所示,進一步驗證了上述求解結果的正確性。4.7已知單位反饋系統的開環傳遞函數為,試確定系統穩定時的K值范圍。解:根據已知單位反饋系統開環傳遞函數可知系統特征方程為:,對系統列寫勞斯表可得:欲使系統穩定則需滿足:匯總得:4.8已知系統的特征方程為,試確定系統穩定時的K值范圍,若要求閉環系統極點均位于s=-1垂線之左,K值該
7、如何調整。解:(1)對系統列寫勞斯表為:欲使系統穩定則需滿足:,即:。(2)將帶入系統原特征方程中得:欲使系統穩定則需滿足:;即4.9已知系統穩定,求的系統穩態誤差。解:由系統結構圖可知系統開環傳遞函數為:,即系統為=2*ROMANII型系統;系統的靜態位置誤差系數,靜態速度誤差系數和靜態加速度誤差系數分別為:;由此可知系統在單位階躍信號、單位斜坡信號和單位加速度信號作用下的穩態誤差分別為:,根據線性系統的疊加原理可得,在信號r(t)作用下系統的穩態誤差為:4.10已知單位負反饋系統開環傳遞函數,求作用下的穩態誤差。解:由于系統開環傳遞函數為:,即系統為=1*ROMANI型系統;系統的靜態位置
8、誤差系數,靜態速度誤差系數和靜態加速度誤差系數分別為:;由此可知系統在單位階躍信號、5t信號和單位加速度信號作用下的穩態誤差分別為:,根據線性系統的疊加原理可得,在信號r(t)作用下系統的穩態誤差為:4.11一直單位負反饋系統開環傳遞函數為,求作用下的穩態誤差。解:由于系統開環傳遞函數為:,即系統為=2*ROMANII型系統;系統的靜態位置誤差系數,靜態速度誤差系數和靜態加速度誤差系數分別為:;由此可知系統在單位階躍信號、單位斜坡信號和作用下的穩態誤差分別為:,根據線性系統的疊加原理可得,在信號r(t)作用下系統的穩態誤差為:5.3基于MATLAB的根軌跡分析法5.3.1利用MATLAB繪制根
9、軌跡利用伊凡斯給出的繪制根軌跡的基本規則,可以粗略地畫出當系統某一參數變化時的根軌跡,但需要花費較多時間,且結果并不精確。而使用MATLAB的相關指令,繪制較為精確的根軌跡就非常方便。繪制根軌跡的常用指令為:rlocus(num,den);或rlocus(num,den,K);繪制例5-2給定單位負反饋控制系統的根軌跡圖。clccleark=1;z=;p=0-1-2;num,den=zp2tf(z,p,k);%將傳遞函數由零極點形式轉換為多項式形式rlocus(num,den);V=-32-33;axis(V);title(root-locusplotofG(s)=K/s(s+1)(s+2);
10、xlabel(Re);ylabel(Im);返回的給定控制系統根軌跡圖為:對例5-3給定的自動控制系統繪制其根軌跡圖。clcclear%k(s+1)/s(s+2)(s+3)k=1;z=-1;p=0,-2,-3;n,d=zp2tf(z,p,k);rlocus(n,d)執行本程序后可得給定系統根軌跡圖為:對例5-4所給定的自動控制系統繪制根軌跡圖clcclear%k/s(s+3)(s2+2s+2)g=tf(1,conv(1,3,1,2,2)0);rlocus(g)執行本程序后返回給定自動控制系統根軌跡圖為:對例5-5所示系統繪制根軌跡。clcclearG1=tf(1,18);G2=tf(11,150);H=tf(1,12);rlocus(G1*G2*H);V=-102-55;axis(V);gridon;xlabel(Re);ylabel(Im);執行本程序后得到系統根軌跡為5.3.2基于根軌跡的系統性能分析當做出控制系統根軌跡圖之后,就可以根據根軌跡對系統進行定性的分析和定量的計算。因為系統的暫態性能和穩態性能與系統閉環極點位置密切相關,實際工程中對系統性能的要求往往可以轉化為對閉環極點位置的要求。1、分析1:在對系統的分析中,一般需要確定根軌跡上某一點的根軌跡增益及其對應
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年度教育教學分管副校長工作總結:腳踏實地管教學仰望星空育人心
- 線性代數試題及答案
- 物理相互運動試題及答案
- 2025年河南省駐馬店市上蔡縣中考三模歷史試題(含答案)
- 加強工程設計企業的客戶關系管理
- 2025挖掘機采購合同范本
- 2025年北京市商業店鋪裝修工程施工合同文件范本
- 2025年中國水凈化器行業市場前景預測及投資價值評估分析報告
- PARP7-IN-23-生命科學試劑-MCE
- L-645164-生命科學試劑-MCE
- 2024屆湖北省武漢市東湖高新區六年級數學小升初摸底考試含解析
- 遼寧省沈陽皇姑區2023-2024學年七年級下學期期末考試語文試題
- 2024年湖南省長沙市中考英語試卷真題(含答案)
- 九宮數獨200題(附答案全)
- 人教版2024年小升初語文模擬試卷(含答案解析)
- 2024年山東高壓電工題庫電工高級工考試題庫(全國版)
- 內鏡下硬化劑治療護理
- 電力智能巡檢系統方案
- 三公經費違規的主要表現及防范措施
- 高中英語外研版(2019)選擇性必修第一冊各單元主題語境與單元目標
- 游艇運營方案
評論
0/150
提交評論