2022屆廣東省汕頭市潮陽啟聲高中高考數(shù)學二模試卷含解析_第1頁
2022屆廣東省汕頭市潮陽啟聲高中高考數(shù)學二模試卷含解析_第2頁
2022屆廣東省汕頭市潮陽啟聲高中高考數(shù)學二模試卷含解析_第3頁
2022屆廣東省汕頭市潮陽啟聲高中高考數(shù)學二模試卷含解析_第4頁
2022屆廣東省汕頭市潮陽啟聲高中高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知集合,ByN|yx1,xA,則AB( )A1,0,1,2,3B1,0,1,2C0,1,2Dx1x22已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是( )ABCD3一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是( )ABCD4在中,則=( )ABCD5在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是( )A0.

3、2B0.5C0.4D0.86如圖所示,三國時代數(shù)學家趙爽在周髀算經(jīng)中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )A134B67C182D1087已知函數(shù),若對于任意的,函數(shù)在內(nèi)都有兩個不同的零點,則實數(shù)的取值范圍為( )ABCD8國家統(tǒng)計局服務業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結論中錯誤的是( )A12個月的PMI值不低于50%

4、的頻率為B12個月的PMI值的平均值低于50%C12個月的PMI值的眾數(shù)為49.4%D12個月的PMI值的中位數(shù)為50.3%9已知傾斜角為的直線與直線垂直,則( )ABCD10已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是( )ABCD11某學校調(diào)查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是17.5,30,樣本數(shù)據(jù)分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據(jù)直方圖,這200名學生中每周的自習時間不少于22.5小時的人數(shù)是( )

5、A56B60C140D12012已知不等式組表示的平面區(qū)域的面積為9,若點, 則的最大值為( )A3B6C9D12二、填空題:本題共4小題,每小題5分,共20分。13若存在實數(shù)使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數(shù)”,下列各組函數(shù)中是對應區(qū)間上的“分離函數(shù)”的有_.(填上所有正確答案的序號),;,;,;,.14現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是_15已知正方形邊長為,空間中的動點滿足,則三棱錐體積的最大值是_.16設命題:,則:_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17

6、(12分)已知函數(shù),若的解集為(1)求的值;(2)若正實數(shù),滿足,求證:18(12分)在ABC中,角所對的邊分別為向量,向量,且.(1)求角的大小;(2)求的最大值.19(12分)設數(shù)列,的各項都是正數(shù),為數(shù)列的前n項和,且對任意,都有,(e是自然對數(shù)的底數(shù)).(1)求數(shù)列,的通項公式;(2)求數(shù)列的前n項和.20(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角, (1)求的值; (2)求邊的長.21(12分)設函數(shù),其中是自然對數(shù)的底數(shù).()若在上存在兩個極值點,求的取值范圍;()若,函數(shù)與函數(shù)的圖象交于,且線段的中點為,證明:.22(10分)已知.(1)若曲線在

7、點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】解出集合A和B即可求得兩個集合的并集.【詳解】集合xZ|2x31,0,1,2,3,ByN|yx1,xA2,1,0,1,2,AB2,1,0,1,2,3故選:A【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據(jù)描述法表示的集合,準確寫出集合中的元素.2D【解析】先將所求問題轉化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象

8、如圖所示過原點作函數(shù)的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數(shù)在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數(shù)形結合的思想,是一道中檔題.3D【解析】首先判斷循環(huán)結構類型,得到判斷框內(nèi)的語句性質(zhì),然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結果與循環(huán)次數(shù)以及的關系,最終得出選項【詳解】經(jīng)判斷此循環(huán)為“直到型”結構,判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,故選D【點睛】題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題 解決程序框圖問題時一定注意以下幾點:(1) 不要混淆處理框和輸

9、入框;(2) 注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3) 注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4) 處理循環(huán)結構的問題時一定要正確控制循環(huán)次數(shù);(5) 要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可4B【解析】在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案【詳解】如下圖,在上分別取點,使得,則為平行四邊形,故,故答案為B. 【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題5B【解析】利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能

10、的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.6B【解析】根據(jù)幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,則小正方形的邊長為,小正方形的面積,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.7D【解析】將原題等價轉化為方程在內(nèi)都有兩個不同的根,先求導,可判斷時,是增函數(shù);當時,是減函數(shù).因此,再令

11、,求導得,結合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數(shù)可判斷當時,在上是增函數(shù);當時,在上是減函數(shù);則應滿足,再結合,構造函數(shù),求導即可求解;【詳解】函數(shù)在內(nèi)都有兩個不同的零點,等價于方程在內(nèi)都有兩個不同的根.,所以當時,是增函數(shù);當時,是減函數(shù).因此.設,若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數(shù);當時,在上是減函數(shù).因為,方程在內(nèi)有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點睛】本題考查由函數(shù)零點個數(shù)求

12、解參數(shù)取值范圍問題,構造函數(shù)法,導數(shù)法研究函數(shù)增減性與最值關系,轉化與化歸能力,屬于難題8D【解析】根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎題.9D【解析】傾斜角為的直線與直線垂直,利用相互垂

13、直的直線斜率之間的關系,同角三角函數(shù)基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式,考查計算能力,屬于基礎題.10D【解析】設雙曲線的左焦點為,連接,設,則,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,設,則,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.11C【解析】試題分析:由題意得,自習時間不少于小時的頻率為,故自習時間不少于小時的頻率為,故選C.考點:頻率

14、分布直方圖及其應用12C【解析】分析:先畫出滿足約束條件對應的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數(shù)求得最大值.詳解:作出不等式組對應的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當過點時,取得最大值9,故選C.點睛:該題考查的是有關線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,

15、應用相應的方法求解.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點,若兩函數(shù)在公切點對應的位置一個單增,另一個單減,則很容易判斷,對,都可以采用此法判斷,對分析式子特點可知,進而判斷【詳解】時,令,則,單調(diào)遞增, ,即.令,則,單調(diào)遞減,即,因此,滿足題意.時,易知,滿足題意.注意到,因此如果存在直線,只有可能是(或)在處的切線,因此切線為,易知,因此不存在直線滿足題意.時,注意到,因此如果存在直線,只有可能是(或)在處的切線,因此切線為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單

16、調(diào)遞增,所以,即.因此,滿足題意.故答案為:【點睛】本題考查新定義題型、利用導數(shù)研究函數(shù)圖像,轉化與化歸思想,屬于中檔題14【解析】由題意容積,求導研究單調(diào)性,分析即得解.【詳解】由題意:容積,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導數(shù)在實際問題中的應用,考查了學生數(shù)學建模,轉化劃歸,數(shù)學運算的能力,屬于中檔題.15【解析】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,設點,根據(jù)題中條件得出,進而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,則,設點,

17、空間中的動點滿足,所以,整理得,當,時,取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題16,【解析】存在符號改任意符號,結論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題. 對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結論:對于一般命題的否定只需直接否定結論即可三、解答題:共70分。解答應寫出文字說明、證明

18、過程或演算步驟。17(1);(2)證明見詳解.【解析】(1)將不等式的解集用表示出來,結合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),因為的解集為,所以,;(2)由(1)由柯西不等式,當且僅當,等號成立【點睛】本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.18(1)(2)2【解析】(1)轉化條件得,進而可得,即可得解;(2)由化簡可得,由結合三角函數(shù)的性質(zhì)即可得解.【詳解】(1),由正弦定理得,即,又 ,又 , 由可得.(2)由(1)可得,的最大值為2.【點睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應用,考查了三角函數(shù)的性質(zhì),屬于

19、中檔題.19(1),(2)【解析】(1)當時,與作差可得,即可得到數(shù)列是首項為1,公差為1的等差數(shù)列,即可求解;對取自然對數(shù),則,即是以1為首項,以2為公比的等比數(shù)列,即可求解;(2)由(1)可得,再利用錯位相減法求解即可.【詳解】解:(1)因為,當時,解得;當時,有,由得,又,所以,即數(shù)列是首項為1,公差為1的等差數(shù)列,故,又因為,且,取自然對數(shù)得,所以,又因為,所以是以1為首項,以2為公比的等比數(shù)列,所以,即(2)由(1)知,所以,減去得:,所以【點睛】本題考查由與的關系求通項公式,考查錯位相減法求數(shù)列的和.20(1) (2)【解析】(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出【詳解】(1)因為角 為鈍角, ,所以 ,又 ,所以 ,且 ,所以 .(2)因為 ,且 ,所以 ,又 ,則 ,所以 .21();()詳見解析.【解析】()依題意在上存在兩個極值點,等價于在有兩個不等實根,由參變分類可得,令,利用導數(shù)研究的單調(diào)性、極值,從而得到參數(shù)的取值范圍;()由題解得,要證成立,只需證:,即:,只需證:,設,即證:,再分別證明,即可;【詳解】解:()由題意可知,在上存在兩個極值點,等價于在有兩個不等實根,由可得,令,則,令,可得,當時,所以在上單調(diào)遞減,且當時,單調(diào)遞增;當時,單調(diào)遞減;所以是的極大值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論