




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、xLxIEFwBB362222BBddBdzzb: Iwith:xwdBLBFz(187,1)(187,2)Rectangular beam:123BBdb: I (187,3)I := Area moment of inertia of the beam B := Strain at the surface of the beamF := Force acting at the end of the beam dB := Thickness of beam w := Deflection of beam bB := Width of beam LB := Length of beam EB
2、:= Youngs modulus of beam187* W. Beitz, K.-H. Grote, Dubbel, Taschenbuch fr den Maschinenbau”*FdbELLxw:wBBBBB3304(187,4)03304wLdbEwFBBBBB(187,5)(188,1)(188,2)Rectangular:123BBdbI (188,3)I := Area moment of inertia of the beam EB := Youngs modulus of the beam FB := Elastic force of the beam at its en
3、d w := Deflection of the beam dB, bB, LB, RB := Thickness, width, length, and radius of the beam, respectively188More aria momentums of inertia are found in books like: W. Beitz, K.-H. Grote, Dubbel, Taschenbuch fr den Maschinenbau” orR.D. Blevins, Formulas for Natural Frequency and Mode Shape“, Kri
4、eger, Malaba, FL (1987)FIELLw:wBBB3300303wLIEwFBBBbBdB(187,3)Circular:RB44BRI Trapezoid shaped:dBebB,1bB,2212221213436,B,B,B,B,B,BBbbbbbbdI(188,4)212123,B,B,B,BBbbbbdewith:(188,5)xLdbEFBBBBB26xwdBLBFz(189,1)Rectangular beam:(187,3) :(189,2)189* W. Beitz, K.-H. Grote, Dubbel, Taschenbuch fr den Masch
5、inenbau”*xLIEFdBBBB2I := Area moment of inertia of the beam EB := Youngs modulus of the beam F := Force acting at the end of the beam B := Strain at the surface of the beam w := Deflection of the beam dB, bB, LB : Thickness, width, and length of the beam, respectivelyxwdBLBFzxLdbEFBBBBB26(189,2):x m
6、 x mw mxLxdbEFwBBBB3223(187,1), (187,3):LB=800 mbB=40 mdB=20 mEB=140 GPaF=1 mN190EB := Youngs modulus of the beam B := Strain at the surface of the beam F := Force acting at the end of the beamdB, bB, LB, w := Thickness, width, length, and deflection of the beam, respectivelyThe strain at the surfac
7、e of a beam clamped at one end and loaded at the other end in transversal direction is largest at the fixed end.Strain and deflection are not a functions of an initial stress of the beam. Rectangular beam:xLdbEFBBBBB26(189,2):Strain and deflection are proportional to the force (linear characteristic
8、 curve).xLxdbEFwBBBB3223(187,1), (187,3):191xwdBLBFzEB := Youngs modulus of the beam B := Strain at the surface of the beam F := Force acting at the end of the beamdB, bB, LB, w := Thickness, width, length, and deflection of the beam, respectivelyRectangular beam :Because of the transverse strain th
9、e beam gets narrower on the side with tensile stress and wider on the opposite side. (With the exception of the region next to the clamping)Cross-section of the beam:Without loadWith loadbBbB (1 B B)dB192xwdBLBFzxLdbEFBBBBB26(189,2):EB := Youngs modulus of the beam B := Poissons ratio of the beam B
10、:= Strain at the surface of the beam F := Force acting at the end of the beamdB, bB, LB, w: Thickness, width, length, and deflection of the beam, respectivelyOnly isotropic materials have been considered so far. *J.J. Wortman, R.A. Evans, Youngs Modulus, Shear Modulus, and Poissons Ratio in Silicon
11、and Germanium“, J. Appl. Phys. 36 (1965) 153 - 156Youngs modulus GPa of silicon and germanium as a function of the orientation in the (100)-plane*However, membranes from mono-crystalline silicon are anisotropic.115*J.J. Wortman, R.A. Evans, Youngs Modulus, Shear Modulus, and Poissons Ratio in Silico
12、n and Germanium“, J. Appl. Phys. 36 (1965) 153 - 156(100)-plane*(110)-plane1501005005010015015010050050100150116*J.J. Wortman, R.A. Evans, Youngs Modulus, Shear Modulus, and Poissons Ratio in Silicon and Germanium“, J. Appl. Phys. 36 (1965) 153 - 156(100)-plane*(110)-plane00,10,20,30,30,20,100,30,20
13、,10,10,20,3117(100)Freely stretched membraneStrain gauges from p-siliconThe edges of v-grooves in (100)-wafers are orientated in -direction.In -direction the piezo effect of p-silicon is largest. r ,elRr ,elRt ,elRt ,elR140 計算最大的電阻變化率及其電壓變化率,假定梁及電阻的分布如上頁所示Capacity C of a capacitor:CCr0eldACCel := El
14、ectrical capacity 0 := Absolute permittivity r := Relative permittivity AC := Inner area of capacitor plates dC := Distance of capacitor platesCapacity CPressure differenceExample pressure sensor:The capacitive measurement of the deflection of a membrane results in no linear signal.The characteristi
15、c curve of a membrane is much more complex than the one of a capacitor.147(147,1)Characteristic curve of a pressure sensor calculated by Finite ElementsCapacity CPressure difference* L. Rosengren, J. Sderkvist, L. Smith, ”Micromachined sensor structures with linear capacitive response”, Sensors and
16、Actuators A 31 (1992) 200 - 205Membrane touches the substrate*148* L. Rosengren, J. Sderkvist, L. Smith, ”Micromachined sensor structures with linear capacitive response”, Sensors and Actuators A 31 (1992) 200 - 205*Top end of the comb structure is conductive.149Characteristic curve of a pressure se
17、nsor calculated by Finite ElementsBending moments are dominating.w0 dM(82,1)dMw082r(82,2)Circular plate bulged up by a pressure difference: 22201MRrwrww(r) := Deflection of membrane w0 := Deflection of the center of the membrane dM := Thickness of membrane 2 RM := Diameter of membrane2 RMw0Mechanica
18、l stress is dominating.w(r) := Deflection of membrane w0 := Deflection of the center of the membrane dM := Thickness of membrane 2 RM := Diameter of membranew0 dM(84,1)84(84,2)Circular membrane bulged up by a pressure difference: 2201MRrwrw114RM, M, dM, EM, w0, 0 := Radius, Poissons ratio, thickness
19、, Youngs modulus, central deflection, and initial stress of the membrane, respectively aM := Length of a square membrane p := Pressure drop over the membraneThin, circular,exactlyThin, square,exactlyThick, circular, without 0, exactlyThick, square,without 0, exactlyIn general, circular,rough approxi
20、mation22200222201105641344MMMMMMMMMERwERdRwdp2MMM2M2002MM0233. 0793. 0026. 1ERw32Rdw4p2MMM2M2002MM021. 070. 01Eaw33. 2adw6 .13ppEdRwwERdpMMMMMMMM2340024311631316pEdawwEadpMMMMMMMM2340024316611660022202,122eqeegW V gAFVggFkzAFggzggVkkgWAqCVVVgVoltage increaseGap decreaseForce increase2320223()22netne
21、tnetAVkgAVFk gggFAVdFdgk dggg Range of stability: examine net (attractive) force on plateIf we increase the gap by dg,the increment 0 or the plate collapsesnetdF2320222023000300202231122827PIPIPInetPIPIPIPInetPIPIPIPIPIPIPIPIAVkgAVFk gggAVAVFggggggggggggkgVASolve for point at which plate goes unstab
22、le:Substitution for k leads to: coscosEquation of Motion: using phasor concepts: eqeqeqeqeqeqF tFtx txtm xC xk xF tkFj m xxC xj coscosImpedance looking in:1 1/ xxxxxxv tvti tItvj lrij CCvj l iir ijParameter Relationships by anology: in the Current Analogy1 eqxeqxeqxFvmlCrxikCMechanical-to-electrical
23、 correspondence in the current analogy:Converting to full phasor form:F= jeqeqeqeqeqeqkFj m xxC xjkj x mj xCj xj1200j=1eqkxFjQ112200020001111 ,eqeqeqeqeqeqeqeqeqeqeqeqeqeqmCxjjjFkkkkQkmkkQQmCCC Reading: Senturia, Chpt. 6, Chpt. 14Lecture Topics:Input ModelingForce-to-Velocity Equiv. CircuitInput Equ
24、ivalent Circuit.Current ModelingOutput Current Into Ground Input CurrentComplete Electrical-Port Equiv. CircuitImpedance & Transfer Functions coscosEquation of Motion: using phasor concepts: eqeqeqeqeqeqF tFtx txtm xC xk xF tkFj m xxC xj coscosImpedance looking in:1 1/ xxxxxxv tvti tItvj lrij CC
25、vj l iir ijParameter Relationships by anology: in the Current Analogy1 eqxeqxeqxFvmlCrxikCThe relationship between input voltage v1 and force Fd1:When displacement x is the mechanical output variable:When velocity v is the mechanical output variable:111dpCFVvx 20221001/dX sFsk sQ s 202211001/ddv ssX
26、 ssFsFsk sQ sCombine the previous lumped LCR mechanical equivalent circuit with a circuit modeling the capacitive transducer circuit model for oltage-to-velocityA TransducerConverts energy from one domain (e. g., electrical) to another (e. g., mechanical)has at least two portsis not generally linear
27、, but is virtually linear when operated with small signals (i.e., small displacements)For physical consistency, use a transformer equivalent circuit to model the energy conversion from the electrical domain to mechanical domain2121 010 -eeffE2=Fd1, e1=v1, just need 1:From the matrix: e2=e1111dpCFVvx
28、 11pCVxWhen the mass moves with time-dependent displacement x(t), the electrode-to-mass capacitors C1(x,t) and C2(x,t) vary with timeThis generates an output current: 2222222222222,In phasor form: I IpppppdqVCqCViCVdtttdVtdCx titCx tVtdtdtdCCxVtViVVdtxtCjVj xxCjj Vxx 22o290 phase log t t when x= -1p
29、pCCIjj VxVvxxI 2112221222221, pfffffIfvIvCVx Again, model with a transformer: 111111111111111111111111 111111 1Get I: ppppppjdV tdCx ti tCx tV tdtdtdVCxV tvViCvvdtxtCCIjCj VVj xVj xxxCCj CVj Vxj VxxxCvVIjj CVj Vxx 111 Feedthrough Motional Current CurrentC1DC: xresdpFxVVkk d111QFonance: x=jkpCQVvjkx
30、21101 101201 101o11Thus: resonance : 90 phase-shifted In phase /V from V This is a cpCQIjjCVjVVxjkQjCVVke01112221011apacity This is an effective in shunt /k input resistance seen looking into Electrode 1Motional Resistance:The equivalent ckf. better get txxmVkbRRIQQhis right!Static electrode-to-mass
31、 overlap capacitance1111oeppCCVVxd2222oeppCCVVxd212112222221221122112e 0211From our transformer model: 0 -1/12112111111iixixeexixxxeeeeeeeffffffveeeFzzfffixlzj lrjj C 22111xeexrjC What is the impedance seen looking into port 1 with port 2 shorted to ground?22222222111ixxixxixeeeexvlrzj lrjij CjC Wha
32、t is the impedance seen looking into port 2 with port 1 shorted to ground?Note: there are not the same as Lx1,Cx1,1/2Rx1!222011112112012121212121212121111121 1eieieeiexxxxxeeeexxxeexixxxxxxeexveivzjlrxjCellijjlrCCvjCjlrrjCR What is the transconductance from port 1 to port 2 with port 2 shorted to gr
33、ound? 0220000/0:00:1:0sQsssQssjjs 121120121212121212121211xxeeeexxxeexixxxxxxeelLijj LrCCvj Cj lrrj CR 02211111xxixxxxxxxxxxxsCisCsvs L CsC RRsLRsssCL CL Separate freq. response f magnitude: 0200002200/111,/xxxxxxixxsQLRiQsL CRLQvRRssQHolds for the symmetrical case, where port 1 and port 2 are ident
34、ical222wherexeexxemLCkbRBelow: plots of resonance electrical and mechanical signals vs. time, showing the phasings between them 01011000212121201ddeiieeeieexQxssFkQxFvssvkiQixssvkQsRm 0012120121 LixLixLixLviRssvRRvRvRssvRRTo convert velocity to a voltage, use a resistive load2x22Since this structure
35、 has completely symmetrical I/O port: C exxeebmRLkTo convert velocity to a voltage, use a resitive load00what resonance: (to simplify the analysis) resonanceThen, generate to off resonance: , where DixDxDixDxDvRvRRvRRs QQQvRRRR 0220022200111/,1/DDxxDxDixxxxDxxxDxxxxxDxDDDxDxDixDxDxxxRsvsR CLRsRRvsR
36、Cs L CsR CRsLRsssCLL CRRssQLvRRRss QRRRRvRRRRssQssLL C To convert velocity to a voltage, use a resistive loadSince this structure has completely symmetrical I/O ports:000 xxxDxxDxLLRRQQRRRLQBrute force approach: 000111ixxxvsCsvRsLsCsC 0022022000200/11/111/1/11/ 1/1/1/ Q,1/xxDxxxxxixDxxxxxDxDxDxDxxxD
37、xxxDxxDxxxxxxxxsCvsCCCssCR CL CvCCsR Cs L CssCCCCCCCCCL CCCL CCCRCCLRssQQCCLL CRLQ DTo sense position (i.e., displacement), use a capacitive loadBrute force approach: 2002200/1/xDixDvCCsvCCssQTo shense position (i.e., displacement), use a capacitive load 000Note: Can we similar shut-cut to the R cas
38、eGet DC responce Cs dominateThen:1DC Gain,ivssQQvs2x22Since this structure has completely symmetrical I/O port: C exxeebmRLkTo convert velocity to a voltage, use a resitive load00what resonance: (to simplify the analysis) resonanceThen, generate to off resonance: , where DixDxDixDxDvRvRRvRRs QQQvRRRR01pxpRRC00N o w , W e g et: ap p ro x im ately1,1DixDpvRssQsvRR In general, the sensor output must be connected to the inputs of further signal conditioning circuits input Ri of these circuits can load RDThese change w/ hook-up not goodProblem: need a sensing circuit that is immu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《天子傳奇win98版》劇情攻略
- 項目團支部介紹課件
- 韶關學院工程力學課件
- 2025年輕水堆核電站及配套產品項目合作計劃書
- xx河流排水防澇設施建設項目規劃設計方案(模板范文)
- 細胞生物學測試試題庫含答案
- 2025年增味劑項目發展計劃
- 現代商場超市連鎖店星級服務培訓 第三章 商品管理技能培訓
- 衛星互聯網行業市場分析1
- 衛生部突發中毒事件衛生應急預案
- 新聞發布會培訓
- 主管護師競聘匯報
- 公園突發事件應急管理預案
- 第4單元-單元素養測評(B)-2024-2025學年語文部編版四年級上冊(含答案解析)
- 2025年內蒙古農村信用社招聘筆試參考題庫含答案解析
- 2025年云南省文山州教育局直屬事業單位招聘27人歷年管理單位筆試遴選500模擬題附帶答案詳解
- GA/T 2150-2024出入境證件智能簽注設備
- 初中數學課后作業設計問題及優化探討
- 檔案庫房安全
- 醫療機構感染預防與控制基本制度解讀
- 星級綠色建筑評價評分表
評論
0/150
提交評論