實(shí)驗(yàn)四數(shù)字圖像濾波及邊緣檢測_第1頁
實(shí)驗(yàn)四數(shù)字圖像濾波及邊緣檢測_第2頁
實(shí)驗(yàn)四數(shù)字圖像濾波及邊緣檢測_第3頁
實(shí)驗(yàn)四數(shù)字圖像濾波及邊緣檢測_第4頁
實(shí)驗(yàn)四數(shù)字圖像濾波及邊緣檢測_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、實(shí)驗(yàn)四實(shí)驗(yàn)四 數(shù)字圖像濾波及邊緣檢測數(shù)字圖像濾波及邊緣檢測 了解圖像復(fù)原的基本方法。了解圖像復(fù)原的基本方法。了解圖像邊緣檢測。了解圖像邊緣檢測。利用利用MATLABMATLAB提供的函數(shù)實(shí)現(xiàn)對圖像處理。提供的函數(shù)實(shí)現(xiàn)對圖像處理。一、實(shí)驗(yàn)?zāi)康囊弧?shí)驗(yàn)?zāi)康亩?shí)驗(yàn)原理二、實(shí)驗(yàn)原理圖像恢復(fù)和圖像增強(qiáng)一樣,都是為了改善圖像圖像恢復(fù)和圖像增強(qiáng)一樣,都是為了改善圖像的視覺效果,以便后續(xù)處理。只是圖像增強(qiáng)方的視覺效果,以便后續(xù)處理。只是圖像增強(qiáng)方法更偏重于主觀判斷,而圖像恢復(fù)則是根據(jù)圖法更偏重于主觀判斷,而圖像恢復(fù)則是根據(jù)圖像畸變或退化原因,進(jìn)行模型處理。像畸變或退化原因,進(jìn)行模型處理。圖像分割是圖像檢索、

2、識別和圖像理解的基本圖像分割是圖像檢索、識別和圖像理解的基本前提。前提。 1、圖像中值濾波、圖像中值濾波中值濾波是基于排序統(tǒng)計(jì)理論的一種能有效抑制噪聲中值濾波是基于排序統(tǒng)計(jì)理論的一種能有效抑制噪聲的非線性信號處理技術(shù)的非線性信號處理技術(shù)。中值濾波的優(yōu)點(diǎn)是運(yùn)算簡單中值濾波的優(yōu)點(diǎn)是運(yùn)算簡單且速度較快且速度較快,在某些條件下在某些條件下,中值濾波方法可以去除中值濾波方法可以去除噪聲噪聲,保護(hù)圖像邊緣保護(hù)圖像邊緣,使圖像較好地復(fù)原使圖像較好地復(fù)原。它非常適它非常適用于一些線性濾波器無法勝任的數(shù)字圖像處理的應(yīng)用用于一些線性濾波器無法勝任的數(shù)字圖像處理的應(yīng)用場合場合。中值濾波的基本原理中值濾波的基本原理中

3、值濾波的基本原理是把數(shù)字圖像或數(shù)字序列中一點(diǎn)中值濾波的基本原理是把數(shù)字圖像或數(shù)字序列中一點(diǎn)的值用該點(diǎn)鄰域中各點(diǎn)值的中值替代。的值用該點(diǎn)鄰域中各點(diǎn)值的中值替代。例如:有一個序列為例如:有一個序列為( (2 2 , ,3 3 , ,4 4 , ,5 5 , ,6 6) ,) ,這個序列的中這個序列的中值為值為4 4。中值濾波器用于圖像處理中是這樣進(jìn)行的中值濾波器用于圖像處理中是這樣進(jìn)行的: :設(shè)置一個濾設(shè)置一個濾波窗口,將其移遍圖像波窗口,將其移遍圖像( (序列序列) )上的點(diǎn),且用窗口內(nèi)各上的點(diǎn),且用窗口內(nèi)各原始值的中值代替窗口中心點(diǎn)的值。原始值的中值代替窗口中心點(diǎn)的值。利用利用MatlabMa

4、tlab實(shí)現(xiàn)數(shù)字圖像中值濾波實(shí)現(xiàn)數(shù)字圖像中值濾波應(yīng)用應(yīng)用MatlabMatlab 軟件中圖像處理工具箱的函數(shù)。軟件中圖像處理工具箱的函數(shù)。二維中值濾波器的函數(shù)格式如下二維中值濾波器的函數(shù)格式如下: : B = Medfilt2(A,m n) B = Medfilt2(A,m n); B = Medfilt2(A)B = Medfilt2(A)。( (缺省窗口大小為缺省窗口大小為3 3)3 3) 函數(shù):函數(shù):imnoiseimnoise()() 格式:格式: J=imnoise(I,type,) type: gaussian Gauss白噪聲白噪聲 salt & pepper 椒鹽噪聲椒

5、鹽噪聲 speckle 乘法噪聲乘法噪聲 圖像中添加噪聲圖像中添加噪聲gaussiangaussian Gauss Gauss白噪聲參數(shù)設(shè)置白噪聲參數(shù)設(shè)置: : M M、V V:在圖像中加入均值為:在圖像中加入均值為M M、方差為、方差為V V的高斯的高斯白噪聲。白噪聲。( (缺省缺省M=0,V=0.01)M=0,V=0.01) J=imnoise(I,gaussian,M,V J=imnoise(I,gaussian,M,V) )salt & pepper salt & pepper 椒鹽噪聲參數(shù)設(shè)置椒鹽噪聲參數(shù)設(shè)置: : D: D:在圖像在圖像I I中加入強(qiáng)度為中加入強(qiáng)度為

6、D D的的“椒鹽椒鹽”黑白像素黑白像素點(diǎn)點(diǎn). . ( (缺省為缺省為0.05)0.05) J=imnoise(I J=imnoise(I, , salt & pepper,D,D) )speckle speckle 乘法噪聲參數(shù)設(shè)置乘法噪聲參數(shù)設(shè)置: : J=imnoise(I J=imnoise(I, , speckle,V,V),),使用公式使用公式J=I+nJ=I+n* *I,I,向圖像向圖像I I中加入乘法噪聲中加入乘法噪聲, ,其中其中n n是均值為是均值為0,0,方差為方差為V V均勻分布的隨機(jī)噪聲均勻分布的隨機(jī)噪聲.(V.(V的缺省值為的缺省值為0.04) 0.04) x

7、=imread(dog.jpg,jpgx=imread(dog.jpg,jpg););i=rgb2gray(x);i=rgb2gray(x);subplot(2,2,1);subplot(2,2,1);subimage(isubimage(i););j1=imnoise(i,gaussian,0,0.04);j1=imnoise(i,gaussian,0,0.04);subplot(2,2,2);subplot(2,2,2);subimage(j1);subimage(j1);j2=imnoise(i,saltj2=imnoise(i,salt & pepper,0.04); &

8、; pepper,0.04);subplot(2,2,3);subplot(2,2,3);subimage(j2);subimage(j2);j3=imnoise(i,speckle,0.08);j3=imnoise(i,speckle,0.08);subplot(2,2,4);subplot(2,2,4);subimage(j3);subimage(j3);a=imread(dog.jpg,jpga=imread(dog.jpg,jpg););i=rgb2gray(x);i=rgb2gray(x);subplot(2,2,1); subimage(isubplot(2,2,1); subim

9、age(i););j=imnoise(i,saltj=imnoise(i,salt & pepper,0.04); & pepper,0.04);subplot(2,2,2); subimage(jsubplot(2,2,2); subimage(j););c=medfilt2(j,2 2);c=medfilt2(j,2 2);subplot(2,2,3); subimage(csubplot(2,2,3); subimage(c););d=medfilt2 (j ,5 5);d=medfilt2 (j ,5 5);subplot(2,2,4); subimage(dsubpl

10、ot(2,2,4); subimage(d););對加噪的圖像進(jìn)行二維中值濾波對加噪的圖像進(jìn)行二維中值濾波2 2、邊緣檢測、邊緣檢測在對圖像的研究和應(yīng)用中,人們往往僅對各幅圖像中在對圖像的研究和應(yīng)用中,人們往往僅對各幅圖像中的某些部分感興趣,需要將這些有關(guān)區(qū)域分離提取出的某些部分感興趣,需要將這些有關(guān)區(qū)域分離提取出來,在此基礎(chǔ)上對相關(guān)目標(biāo)作進(jìn)一步的處理。來,在此基礎(chǔ)上對相關(guān)目標(biāo)作進(jìn)一步的處理。分割算法分割算法 借助灰度圖像中像素灰度值的兩個性質(zhì):不連續(xù)性和借助灰度圖像中像素灰度值的兩個性質(zhì):不連續(xù)性和相似性。區(qū)域內(nèi)部的像素一般具有灰度相似性,而在相似性。區(qū)域內(nèi)部的像素一般具有灰度相似性,而在區(qū)

11、域之間的邊界上一般具有灰度不連續(xù)性。區(qū)域之間的邊界上一般具有灰度不連續(xù)性。 利用區(qū)域間灰度不連續(xù)性的基于邊界的算法;利用區(qū)域間灰度不連續(xù)性的基于邊界的算法; 利用區(qū)域內(nèi)灰度相似性的基于區(qū)域的算法。利用區(qū)域內(nèi)灰度相似性的基于區(qū)域的算法。根據(jù)分割過程中處理策略的不同根據(jù)分割過程中處理策略的不同并行算法并行算法 所有判斷和決定都可獨(dú)立和同時地做出。所有判斷和決定都可獨(dú)立和同時地做出。串行算法串行算法 前期處理的結(jié)果可被其后的處理過程所利用。前期處理的結(jié)果可被其后的處理過程所利用。兩種算法的對比兩種算法的對比 串行算法所用時間要長與并行算法,但其抗噪聲能力串行算法所用時間要長與并行算法,但其抗噪聲能力

12、則強(qiáng)于并行算法。則強(qiáng)于并行算法。分割算法分類表分割算法分類表注意:現(xiàn)在尚無一種適合于所有圖像的通用分割算法,注意:現(xiàn)在尚無一種適合于所有圖像的通用分割算法,現(xiàn)在提出的分割算法大都是針對具體問題的。現(xiàn)在提出的分割算法大都是針對具體問題的。分類分類邊界(不連續(xù)邊界(不連續(xù)性)性)區(qū)域(相似性)區(qū)域(相似性)并行處理并行處理PBPR串行處理串行處理SBSR邊緣檢測邊緣檢測采用并行邊界技術(shù)。采用并行邊界技術(shù)。兩個具有不同灰度值的相鄰區(qū)域之間總存在邊緣。邊兩個具有不同灰度值的相鄰區(qū)域之間總存在邊緣。邊緣是灰度值不連續(xù)的結(jié)果,這種不連續(xù)常可利用求導(dǎo)緣是灰度值不連續(xù)的結(jié)果,這種不連續(xù)常可利用求導(dǎo)的方法檢測到

13、。一般常用一階和二階導(dǎo)數(shù)來檢測邊緣。的方法檢測到。一般常用一階和二階導(dǎo)數(shù)來檢測邊緣。微分算子微分算子 邊緣檢測可借助空域微分算子通過卷積完成。邊緣檢測可借助空域微分算子通過卷積完成。 梯度算子;梯度算子; 拉普拉斯算子;拉普拉斯算子; 綜合正交算子。綜合正交算子。 邊界閉合邊界閉合利用各種算子得到的邊緣像素常常是孤立或分小段連利用各種算子得到的邊緣像素常常是孤立或分小段連續(xù)的。為組成區(qū)域的封閉邊界將不同的區(qū)域分開,需續(xù)的。為組成區(qū)域的封閉邊界將不同的區(qū)域分開,需要將邊緣像素連接起來。要將邊緣像素連接起來。哈夫變換哈夫變換 是利用圖像全局特性而將邊緣像素連接起來組成區(qū)域是利用圖像全局特性而將邊緣

14、像素連接起來組成區(qū)域封閉邊界的方法。封閉邊界的方法。 MATLABMATLAB實(shí)例實(shí)例提取二進(jìn)制圖像的輪廓。提取二進(jìn)制圖像的輪廓。語法:語法:BW2 = bwmorph(BW1,operation)BW2 = bwmorph(BW1,operation)operationoperation取值:取值:bridge;clean;close; fill; majority; remove; shrink;skel等。等。 BW1 = imread(BW1 = imread(circles.pngcircles.png););subplot(2,2,1); subplot(2,2,1); subim

15、age(BW1);subimage(BW1);BW2 = bwmorph(BW1,BW2 = bwmorph(BW1,removeremove););subplot(2,2,2); subplot(2,2,2); subimage(BW2)subimage(BW2)檢測灰度圖像的邊緣檢測灰度圖像的邊緣格式:格式: BW = edge(I,methodBW = edge(I,method) )I = imread(rice.pngI = imread(rice.png););imshow(Iimshow(I););BW1 = edge(I,prewittBW1 = edge(I,prewitt)

16、;);figure; figure; imshow(BW1); imshow(BW1); BW2 = edge(I,canny);BW2 = edge(I,canny);figure;figure;imshow(BW2);imshow(BW2);區(qū)域生長法分割圖像區(qū)域生長法分割圖像主要考慮像素及其空間鄰域像素之間的關(guān)系,開始時主要考慮像素及其空間鄰域像素之間的關(guān)系,開始時確定一個或多個像素點(diǎn)作為種子,然后按照某種相似確定一個或多個像素點(diǎn)作為種子,然后按照某種相似準(zhǔn)則增長區(qū)域,逐步生成具有某種均勻性的空間區(qū)域,準(zhǔn)則增長區(qū)域,逐步生成具有某種均勻性的空間區(qū)域,將相鄰(將相鄰(4 4鄰域或鄰域或8

17、8鄰域)的具有相似性質(zhì)的像素或區(qū)鄰域)的具有相似性質(zhì)的像素或區(qū)域歸并從而逐步增長區(qū)域,直到?jīng)]有可以歸并的點(diǎn)或域歸并從而逐步增長區(qū)域,直到?jīng)]有可以歸并的點(diǎn)或其他小區(qū)域?yàn)橹埂^(qū)域內(nèi)像素的相似性度量可以是平其他小區(qū)域?yàn)橹埂^(qū)域內(nèi)像素的相似性度量可以是平均灰度值、紋理或顏色等信息。均灰度值、紋理或顏色等信息。區(qū)域生長由區(qū)域生長由3 3個主要步驟組成個主要步驟組成選擇合適的種子點(diǎn)。選擇合適的種子點(diǎn)。確定生長準(zhǔn)則。確定生長準(zhǔn)則。確定生長停止條件。確定生長停止條件。工具函數(shù)工具函數(shù)imreconstrctimreconstrct( )( )語法格式:語法格式: outim=imreconstruct(mar

18、kerim,maskimoutim=imreconstruct(markerim,maskim) )其中:其中: markerimmarkerim 標(biāo)記圖像標(biāo)記圖像 maskimmaskim 模板圖像模板圖像 工具函數(shù)的工作過程是一個迭代過程。工具函數(shù)的工作過程是一個迭代過程。對一幅灰度圖像用區(qū)域生長法進(jìn)行分割對一幅灰度圖像用區(qū)域生長法進(jìn)行分割首先指定幾個種子點(diǎn),其次把圖像中灰度值等首先指定幾個種子點(diǎn),其次把圖像中灰度值等于種子點(diǎn)的像素點(diǎn)作為種子點(diǎn),然后以種子點(diǎn)于種子點(diǎn)的像素點(diǎn)作為種子點(diǎn),然后以種子點(diǎn)為中心,各像素點(diǎn)與種子點(diǎn)的灰度值的差不超為中心,各像素點(diǎn)與種子點(diǎn)的灰度值的差不超過某個值。則認(rèn)

19、為該像素點(diǎn)和種子點(diǎn)具有相似過某個值。則認(rèn)為該像素點(diǎn)和種子點(diǎn)具有相似性。性。MATLABMATLAB參考程序參考程序a=imread(dog1.jpg);a=imread(dog1.jpg);I=rgb2gray(a);I=rgb2gray(a);subplot(1,2,1); imshow(Isubplot(1,2,1); imshow(I););seedxseedx=256,128,64;=256,128,64;seedy=128,256,128;seedy=128,256,128;hold onhold onplot(seedx,seedy,gs,linewidth,1);plot(see

20、dx,seedy,gs,linewidth,1);title(title(原始圖像及種子位置原始圖像及種子位置););I=double(II=double(I););markerimmarkerim=I=I(seedy(1),seedx(1);=I=I(seedy(1),seedx(1);for i=2:length(seedx)for i=2:length(seedx) markerim=markerim | (I=I(seedy(i),seedx(i markerim=markerim | (I=I(seedy(i),seedx(i););endendthresh=15,10,15;thresh=15,10,15;maskim=zeros(size(Imaskim=zeros(size(I););for i=1:len

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論