

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、最小二乘法主要用來(lái)求解兩個(gè)具有線性相關(guān)關(guān)系的變量的回歸方程,該方法適用于求解與線性回歸方程相關(guān)的問(wèn)題,如求解回歸直線方程,并應(yīng)用其分析預(yù)報(bào)變量的取值等破解此類問(wèn)題的關(guān)鍵點(diǎn)如下: 析數(shù)據(jù),分析相關(guān)數(shù)據(jù),求得相關(guān)系數(shù)r,或利用散點(diǎn)圖判斷兩變量之間是否存在線性相關(guān)關(guān)系,若呈非線性相關(guān)關(guān)系,則需要通過(guò)變量的變換轉(zhuǎn)化構(gòu)造線性相關(guān)關(guān)系. 建模型根據(jù)題意確定兩個(gè)變量,結(jié)合數(shù)據(jù)分析的結(jié)果建立回歸模型. 求參數(shù)利用回歸直線y=bx+a的斜率和截距的最小二乘估計(jì)公式,求出b,a,的值從而確定線性回歸方程. 求估值.將已知的解釋變量的值代入線性回歸方程y=bx+a中,即可求得y的預(yù)測(cè)值.注意:回歸直線方程的求解與應(yīng)
2、用中要注意兩個(gè)方面:一是求解回歸直線方程時(shí),利用樣本點(diǎn)的中心(x,y)必在回歸直線上求解相關(guān)參數(shù)的值;二是回歸直線方程的應(yīng)用,利用回歸直線方程求出的數(shù)值應(yīng)是一個(gè)估計(jì)值,不是真實(shí)值.經(jīng)典例題:下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.M60402000SO6040藥OIt-yOK-alL為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為1,217)建立模型:y=-30.4+13.5t;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型:y=99+17.5t.(1) 分別
3、利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;(2) 你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.思路分析:(1)兩個(gè)回歸直線方程中無(wú)參數(shù),所以分別求自變量為2018時(shí)所對(duì)應(yīng)的函數(shù)值,就得結(jié)果,(2)根據(jù)折線圖知2000到2009,與2010到2016是兩個(gè)有明顯區(qū)別的直線,且2010到2016的增幅明顯高于2000到2009,也高于模型1的增幅,因此所以用模型2更能較好得到2018的預(yù)測(cè).解析:(1)利用模型,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為=30.4+13.5x19=226.1(億元).利用模型,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為=99+17
4、.5x9=256.5(億元).(2)利用模型得到的預(yù)測(cè)值更可靠理由如下:(i) 從折線圖可以看出,2000年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒(méi)有隨機(jī)散布在直線y=-30.4+13.5t上下,這說(shuō)明利用2000年至2016年的數(shù)據(jù)建立的線性模型不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì).2010年相對(duì)2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線的附近,這說(shuō)明從2010年開(kāi)始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長(zhǎng)趨勢(shì),利用2010年至2016年的數(shù)據(jù)建立的線性模型=99+17.5t可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì),因此利用模型得到的
5、預(yù)測(cè)值更可靠.(ii) 從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型得到的預(yù)測(cè)值226.1億元的增幅明顯偏低,而利用模型得到的預(yù)測(cè)值的增幅比較合理,說(shuō)明利用模型得到的預(yù)測(cè)值更可靠.以上給出了2種理由,考生答出其中任意一種或其他合理理由均可得分.線性回歸方程是利用數(shù)理統(tǒng)計(jì)中的回歸分析,來(lái)確定兩種或兩種以上變數(shù)間相總結(jié):若已知回歸直線方程,則可以直接將數(shù)值代入求得特定要求下的預(yù)測(cè)值;若回歸直線方程有待定參數(shù),則根據(jù)回歸直線方程恒過(guò)中心點(diǎn)求參數(shù).(H)利用(I)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人
6、均純4攵入.附:回歸直線的斜率和截距的最小二乘估計(jì)公式分罐為I"JJ-U工厲-以旳刃4"18!a.jn.f卜二,ay-bit(2011年全國(guó)新課標(biāo)2卷理19)某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入珅單位:F元的數(shù)據(jù)如下表年份2007200820092010201120122013年份代12346-7人均純收入F2.93.33.64.44.85.25.9(I)求廠關(guān)于的線性回歸方程;互依賴的定量關(guān)系的一種統(tǒng)計(jì)分析方法之一,線性回歸也是回歸分析中第一種經(jīng)過(guò)嚴(yán)格研究并在實(shí)際應(yīng)用中廣泛使用的類型。按自變量個(gè)數(shù)可分為一元線性回歸分析方程和多元線性回歸分析方程。線性方程不難
7、,公式會(huì)直接給出,有時(shí)會(huì)出現(xiàn)在選擇題,這部分難度同樣是在于計(jì)算,剛開(kāi)始學(xué)這部分知識(shí)的時(shí)候很多同學(xué)沒(méi)有耐心計(jì)算,其實(shí)很簡(jiǎn)單的列個(gè)表格算就行了愛(ài)主利用題口公式豐(I)由題意得:/41-2.9+33+3.64-4.4+4.8+52+5.96=0.5/*aybt=430.5x4=2.3所求線性回歸方程為:$=05+2.3(ID由1)中的回歸方程的斜率可知,2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入逐漸增加-令/=9得=_p=0.5x9+2.3=6,8t預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入為6.8千元口某公司要推出一種新產(chǎn)品,分6個(gè)相等時(shí)長(zhǎng)的時(shí)段進(jìn)行試銷,并對(duì)賣出的產(chǎn)品進(jìn)行跟蹤以及收集顧客
8、的評(píng)價(jià)情況(包括產(chǎn)品評(píng)價(jià)和服務(wù)評(píng)價(jià)),在試銷階段共賣出了480件,通過(guò)對(duì)所賣出產(chǎn)品的評(píng)價(jià)情況和銷量情況進(jìn)行統(tǒng)計(jì),一方面發(fā)現(xiàn)對(duì)該產(chǎn)品的好評(píng)率為5/6,對(duì)服務(wù)的好評(píng)率為0.75,對(duì)產(chǎn)品和服務(wù)兩項(xiàng)都沒(méi)有好評(píng)有30件,另一方面發(fā)現(xiàn)銷量和單價(jià)有一定的線性相關(guān)關(guān)系,具體數(shù)據(jù)如下表:時(shí)段,123456'單價(jià)乳(元)800820840S60m銷量y件)904-S380756®能否在犯譜誤的概率不超過(guò)0001的前提下,認(rèn)為產(chǎn)品好評(píng)和服務(wù)好評(píng)有關(guān)?該產(chǎn)品的成本是SOO/E/ft,預(yù)計(jì)在今后的銷售中,銷量和單價(jià)仍然服從這糠的線性相關(guān)關(guān)系該公司如果柜獲得最犬刑潤(rùn),此產(chǎn)品的定價(jià)應(yīng)為塞少元?(.參考公式
9、:線性回歸方程中系數(shù)計(jì)算公式分別為參考數(shù)據(jù)?(K2>k)Q450.100.050.0250.010O.OQ50.001.k2.0722.706S.8415.0246.6357.87910.82866gXiVi=40660Q,匸Xi3=4342000)n=l1=1解(球由題意/得產(chǎn)品好評(píng)和服務(wù)好評(píng)的2X2列聯(lián)表:服務(wù)好評(píng)服務(wù)粧有好評(píng)絶計(jì)產(chǎn)品好評(píng)31090400產(chǎn)品沒(méi)有好評(píng)-5030£0,總計(jì)3601204®0耳中a=310fb=90?c=5Q;430,aJ-bc=48Q0f'-TvV代九疋二ncad_bc>2得K1=S<10.S2S.(a+b-fe+
10、d)(a+G).(b+d)二不能在氾錯(cuò)誤的概率不0.001的前扌昱下,認(rèn)為產(chǎn)品好評(píng)和撮務(wù)好評(píng)有去設(shè)獲得的利潤(rùn)為貨元,根?居計(jì)算可得,=850,?=80,代入入回歸方程得,-0.2.+250:4=(-Q.2x+25&)(x-500)=-G.2x2+350x-125000.此跚圖象為開(kāi)向下,対稱軸方程為x=875i1當(dāng)x=875時(shí),較(x)取的最大值.即該公司如果想獲得最大利潤(rùn),±0境希歸働癥青,考點(diǎn)分析:線性回歸方程.線性回歸方程是高考新增內(nèi)容,主要考查散點(diǎn)圖、變量間的相關(guān)關(guān)系的判斷以及線性回歸方程的求法。題干分析:(1)由題意得到2x2列聯(lián)表,由公式求出K2的觀測(cè)值,對(duì)比參考
11、表格得結(jié)論;(2)求出樣本的中心點(diǎn)坐標(biāo),計(jì)算回歸方程的系數(shù),寫出利潤(rùn)函數(shù)w的解析式,求出w(x)的最大值以及對(duì)應(yīng)的x的值.解題反思:高考對(duì)線性回歸方程的考查力度逐步增加,以前只有很少題型出現(xiàn),但在近幾年高考試題中就很常見(jiàn)了,逐漸成為高考數(shù)學(xué)熱點(diǎn)問(wèn)題之一,由此可以看出這部分知識(shí)的重要性了。3.(2017.山東卷)為了研究某班學(xué)生的腳長(zhǎng)x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測(cè)量數(shù)據(jù)的散點(diǎn)圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為y=bxa.已知史x=225,史y=1600,iii=1i=1b=4.該班某學(xué)生的腳長(zhǎng)為24,據(jù)此估計(jì)其身高為()A.16
12、0B.163C.166D.170解析由已知得x=22.5,y=160,回歸直線方程過(guò)樣本點(diǎn)中心(x,y),且b=4,.160二4X22.5+y,解得y=70.二回歸直線方程為$=4x+70,當(dāng)x=24時(shí),$二166.故選C.(2016全國(guó)III卷)如圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.年生活垃墟兀車花竝理昴丿注:年份代碼17分別對(duì)應(yīng)年份20082014. 由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明; 建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.附注:參考數(shù)據(jù):fy=9.32,ft.y=40
13、.17,七(y亍)2=0.55,/72.646.i=11i=111v.=1I“參考公式:相關(guān)系數(shù)廠=/17N丿耳石鄉(xiāng)®一刑回歸方程y=a+%中斜率和截距的最小二乘估計(jì)公式分別為:X(Zj-7)(vr-y)1=,a=Nb"T尸i=解由折線圖中的數(shù)據(jù)和附注中參考數(shù)據(jù)得t=4,f(tt)2=28,i=1i0.55.f(t.t)(y.y)=ft.y.i=1i=1氓y.=4017-4X932=289,所以2.890.55X2X2.6460.99.因?yàn)閥與t的相關(guān)系數(shù)近似為0.99,說(shuō)明y與t的線性相關(guān)程度相當(dāng)高,從而可以用線性回歸模型擬合y與t的關(guān)系.由y=9.32=7=,A1.33
14、1及得b=j(tit)(yiy)2.89十=心0.103,f(t.t)228i=1iAA-a=yZ?t1.3310.103X40.92.所以,y關(guān)于t的回歸方程為Z=0.92+0.10t.將2016年對(duì)應(yīng)的t=9代入回歸方程得::=0.92+0.10X9=1.82.所以預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量約為1.82億噸.探究提高1.求回歸直線方程的關(guān)鍵及實(shí)際應(yīng)用(1)關(guān)鍵:正確理解計(jì)算b,Z的公式和準(zhǔn)確地計(jì)算.(2)實(shí)際應(yīng)用:在分析實(shí)際中兩個(gè)變量的相關(guān)關(guān)系時(shí),可根據(jù)樣本數(shù)據(jù)作出散點(diǎn)圖來(lái)確定兩個(gè)變量之間是否具有相關(guān)關(guān)系,若具有線性相關(guān)關(guān)系,則可通過(guò)線性回歸方程估計(jì)和預(yù)測(cè)變量的值.(2017唐
15、山一模)某市春節(jié)期間7家超市的廣告費(fèi)支出Xj(萬(wàn)元)和銷售額yi(萬(wàn)元)數(shù)據(jù)如下:超市ABCDEFG廣告費(fèi)支出x.i1246111319銷售額y.19324044525354 若用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程; 用對(duì)數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程$=121nx+22,經(jīng)計(jì)算得出線性回歸模型和對(duì)數(shù)模型的R2分別約為0.75和0.97,請(qǐng)用R2說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為8萬(wàn)元時(shí)的銷售額.參數(shù)數(shù)據(jù)及公式:x=8,y=42,fx.y=2794,fx2=708,i=1ZZi=1Z”空心兒一打”_b=;tel=y7Jti2=0.7.(1)解析"3.918>3.841,且P(K2k0=3.841)=0.05,根據(jù)獨(dú)立性檢驗(yàn)思想“這種血清能
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年護(hù)士職業(yè)資格考試試題及答案
- 2025年傳媒藝術(shù)專業(yè)綜合素質(zhì)能力測(cè)試卷及答案
- 2025年電動(dòng)汽車工程師職業(yè)資格考試試卷及答案
- 2025年財(cái)務(wù)政策與法規(guī)考試真題及答案
- 2025年財(cái)務(wù)報(bào)表分析考試題及答案解析
- 安徽省宿州市宿城一中學(xué)2025屆七年級(jí)英語(yǔ)第二學(xué)期期中教學(xué)質(zhì)量檢測(cè)模擬試題含答案
- 2025湖北中考數(shù)學(xué)試卷
- 中班安全吃健康的食物教案
- 服務(wù)禮儀培訓(xùn)方案
- 加氫裂化裝置安全培訓(xùn)
- 板鞋競(jìng)速競(jìng)賽規(guī)則
- 滅火器維修與報(bào)廢規(guī)程
- 皮膚病的臨床取材及送檢指南-修訂版
- 機(jī)型理論-4c172實(shí)用類重量平衡
- 校企合作項(xiàng)目立項(xiàng)申請(qǐng)表(模板)
- 管道工廠化預(yù)制推廣應(yīng)用課件
- 海水的淡化精品課件
- 項(xiàng)目工程移交生產(chǎn)驗(yàn)收?qǐng)?bào)告
- 清華大學(xué)美術(shù)學(xué)院陶瓷藝術(shù)設(shè)計(jì)系研究生導(dǎo)師及研究課題
- 計(jì)算機(jī)控制實(shí)驗(yàn)報(bào)告初稿(共31頁(yè))
- 抗磷脂抗體與抗磷脂綜合征.ppt
評(píng)論
0/150
提交評(píng)論