小學數學六年級長方體和正方體的體積教學設計范文_第1頁
小學數學六年級長方體和正方體的體積教學設計范文_第2頁
小學數學六年級長方體和正方體的體積教學設計范文_第3頁
小學數學六年級長方體和正方體的體積教學設計范文_第4頁
小學數學六年級長方體和正方體的體積教學設計范文_第5頁
免費預覽已結束,剩余1頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、小學數學六年級長方體和正方體的體積教學設計范文教學內容教材第27頁,練習六48題的內容。教材簡析長方體與正方體的體積公式,除了有一般與特殊的關系(正方體是特殊的長方體,正方體的體積公式是長方體體積公式的特例),還有相同的內容。認識它們的相同,能簡化知識結構。第27頁教學這個內容,分三步進行: 第一步認識長方體和正方體的底面。教材在長方體、正方體的直觀圖上,用涂顏色和文字標注等辦法呈現它們的底面,讓學生看到底面一般指長方體、正方體的下面(認識長方體時曾指過上、下、前、后、左、右三組相對的面)。第二步認識底面積。長方體或正方體的底面,都是表面的一部分。教材指出,長方體和正方體底面的面積,叫做它們的

2、底面積,幫助學生建立底面積的概念,要求學生研究計算底面積的方法,聯系求表面積的經驗,得出長方體的底面積=長寬,正方體的底面積=棱長棱長,進一步加強對底面的認識。第三步演變原來的體積公式。在長方體的體積=長寬高里,如果把長寬看成先算底面積,那么體積公式可以演變成底面積高。在正方體的體積=棱長棱長棱長里,如果把棱長棱長看作先算底面積,那么體積公式也演變成底面積高。由于長方體、正方體的體積公式都能演變成底面積高,因而獲得了統一。教學目標1認識并掌握底面積的計算方法。2通過自主探索,掌握長方體體積和正方體體積的計算公式都可以寫成底面積高,獲得體積公式的統一,從而進一步理解體積的意義。3能發展解決問題的

3、策略,積累數學活動經驗;能培養創新精神和實踐能力,有利于形成積極的情感態度。教學重、難點教學重點:掌握體積計算公式底面積高。教學難點:自主探索、推導體積公式底面積高的過程。教學過程一、 復習舊知、鞏固體積公式。出示習題:計算下面長方體和正方體的體積。學生獨立完成,請兩名學生板演。交流:(1)201610=3200(平方米)(2)555=125(平方厘米)提問:你還能用其他的方法來計算出它們的體積嗎?今天我們繼續來研究它們的體積公式。(板書課題)設計意圖:通過復習鞏固已學知識,并通過簡單的一句提問你還能用其他的方法來計算出它們的體積嗎?,把學生的思維調動起來,激發了學生的求知欲望。二探索體積公式

4、底面積高。1認識底面。(1)引出底面概念。出示:(如圖)提問:老師剛才在長方體、正方體的直觀圖上,用涂顏色和文字標注等辦法呈現它們的底面。你們知道什么是底面嗎?同桌探討,交流引出:底面一般指長方體、正方體的下面。(2)鞏固對底面的認識1)出示:粉筆盒、冰箱、紙巾盒等圖,讓學生指出其底面。2)出示:請學生指出此長方體木料的底面,并介紹邊長是0。3米的正方形是此木料的橫截面。設計意圖:認識底面,是計算底面積和計算體積公式的關鍵所在,本環節在學生復習了已學的長方體和正方體體積公式的基礎上,并在復習用的兩幅圖上引出底面,讓學生感受知識就在身邊,同時也為研究體積公式底面積高奠定了知識基礎,讓學生體會知識

5、之間的內在聯系。通過讓學生自主探索交流,指一指各物體的底面,并通過長方體木料的教學,區分了底面和側面,加深了學生對于底面的認識。2認識底面積。提問:認識了底面,那什么是底面面積呢?交流得出:長方體和正方體底面的面積叫做它們的底面積。提問:長方體的底面積如何計算?正方體的底面積如何計算?學生獨立寫在自備本上。交流得出:長方體的底面積=長寬,正方體的底面積=棱長棱長。設計意圖:通過交流探討,得出長方體和正方體的底面積,也進一步加強了對底面的認識。3演變原來的體積公式。(1)師:學到這兒,你能想到用其他方法來計算一開始的兩個長方體和正方體的體積嗎?學生同桌探討,再全班交流得出。(板書) 長方體體積=

6、長寬高長方體底面積=長寬 長方體體積=底面積高正方體體積=棱長棱長棱長正方體底面積=棱長棱長 正方體體積=底面積高講解:如果用S表示底面積,上面的公式可以寫成:V=Sh設計意圖:學生主動經歷推導過程,利用長方體體積=長寬高和長方體底面積推導出長方體體積=底面積高,在推出正方體體積=底面積高時,演繹推理能完成推導,因為正方體具有長方體的所有特征,或者用類比推理也能完成,并利用了簡單明了的圖示,幫助學生順利完成探索,初步培養學生的邏輯推理能力。體積公式都能演變成底面積高,獲得了統一,其本身是一次認知簡化。(2)計算長方體木料的面積。學生獨立完成,再交流。兩種不同的方法:(1)先算出底面的面積,再算木料的體積。(2)先算出橫截面的面積,再算木料的體積。思考:長方體體積公式還能演變成橫截面面積長,那么正方形體積公式還可以怎樣寫呢?設計意圖:充分挖掘教材,本題本是練習六中的習題,在得出體積公式底面積高后,教學此內容,一是鞏固了橫截面,二是讓學生體會長方體、正方體的體積公式還能演變成長橫截面面積、橫截面面積棱長,從而對體積公式有更充實、更豐富的體驗。 三、聯系實際,應用提高。完成練習六第4、6、7、8題。在學生充分思考的基礎上再進行交流。設計意圖:通過練習,讓學生進一步體會底面積、高和體積之間的關系,靈活運用于實際生活。四、總結知識,升華提高。提問:今天我們學習了什么?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論