




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、充要條件教案1 設計思想:新的課程標準指出:數學課程應面向全體學生,促進學生獲得數學素養的培養和提高;逐步形成數學觀念和數學意識?這與建構主義教學觀相吻合?本節課正是基于這樣的理念,通過創設豐富的問題情境,引導學生主動探究,強調學生的主體性,使學生實現知識的建構,培養學生“用數學”的意識?在教學中盡量多地讓學生親身體驗在“主動”中發展,在“合作”中增知,在“探究”中 創新 .2、教材分析:教科書結合實例給出推斷符號“二 ”和等價符號“=”,并引出充分條件、必要條件與充要條件的概念 ?它們是研究命題的條件與結論之間的邏輯關系的重要工具,是中學數學中最重要的數學概念之一?在“充分條件與必要條件”這
2、節內容前,教材安排了 “命題及其關系”作為必要的知識 鋪墊,并把充分、必要條件的定義安排在第一課時,第二課時學習充要條件?學習本節,要注意與前面有關邏輯初步知識內容的聯系,本節所講的充分條件、必要條件與充要條件中的p、 q 與四種命題中的p、q 內容是一致的,即它們可以是簡單命題,可以是不能判斷真假的語句,也可以是“若 p則 q ”形式的復合命題,但本節中,一般只要求 p 、 q 是簡單命題,而不作更深的討論.新的國家標準規定:符號 “ =” 叫做推斷符號. “ p= q ”表示“若 p 則 q” , 也表示“p 蘊含 q” , 有時也用“p > q ”, “ p =q ”還可寫成“q
3、?二p ”.符號“二”叫做等價符號 . “ p= q ”表示“p= q ”且“ q= p ”;也表示“p 等價 q” ?“ p= q ” 有時也寫成“ p I q ”.本節的重點與難點是關于充分條件、必要條件及充要條件的概念的理解和判斷.(1) 充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數學概念,主要用來區分命題的條件和結論之間的因果關系.(2) 在判斷條件和結論之間的因果關系中應該: 首先分清條件是什么,結論是什么; 然后嘗試用條件推結論,再嘗試用結論推條件?推理方法可以是直接法、間接法( 即反證法 ),也可以舉反例說明其不成立; 最后再指出條件是結論的什么條
4、件.(3) 在討論條件和條件的關系時,要注意:(1) 若 p= q ,但 q = ? p, 則 p 是 q 的充分但不必要條件;(2) 若q= p ,但p q,則p是q的必要但不充分條件(3) 若p=q ,且q= P ,則p 是q 的充要條件;(4) 若pq, 且qR P, 則P 是q 的既不充分也不必要條件.(4) 若條件 p 以集合 P 的形式出現,結論q 以集合 Q 的形式出現,則借助集合知識,有助于充要條件的理解和判斷 . 若 P Q ,則P 是 Q 的充分條件; 若 Q P ,則P 是 Q 的必要條件;若P =Q,貝U P是Q的充要條件; 若P二Q,且Q二P,則P是Q的既不充分也不必
5、要條件.(5) 要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立?證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性?由于原命題與逆否命題等價,當我們證明某一命題有困難時,可以證明該命題的逆否命題成立,從而得出原命題成立.3、 學情分析:雖然經過初中及高一的學習,學生已經具備一定的邏輯推理能力,但學生在學習本節內容時的知識儲備仍不夠豐富 . 這些概念較抽象,與學生原有的思維習慣有所差異,理解和掌握這些內容有一定難度 . 結合以往的教學實踐,我估計學生會在以下幾個方面的學習中存在困難:若p= q ,為什么把q叫p的必要條件;在判斷 p是q的什么條件時,學生知道要判
6、斷p是否是q的充分條件,但會“忘記”還要判斷 p是否是q的必要條件%3)在具體關系判斷中,較難確定誰是條件p.為了突破難點,理順知識間的邏輯關系,讓學生能在比較、識別中把握三個概念的內涵,教學中對這部分內容進行整合處理,第一課時完成三個定義的學習以及初步運用,第二課時進行拓展應用訓練 ?基于本節內容特點,教學中通過師生對實例的考察研究,采用探究式教學法,通過師生互動來實現本節課的教學目標?對學生的要求,不可追求一步到位,要有一個隨著學習的深入,逐步提高、完善的過程.4、 教學目標:1?初步理解充分條件、必要條件與充要條件的概念,掌握幾種基本類型的判定方法,熟練利用“ ? ”解決具體問題 ?2
7、. 從實例探究中感知概念;從原命題及逆否命題的對比分析中形成概念;從發散練習題的構造中理解概念;從集合的角度深化概念;提高數學語言的運用能力和邏輯推斷能力.3 . 在對命題的條件與結論間邏輯關系的探究中培養學生思維的嚴謹性;通過嚴格推理和證明的教學,形成實事求是的科學態度和鍥而不舍的鉆研精神,認識數學的科學價值和人文價值,從而進步樹立辯證唯物主義的世界觀.5 、 重點難點:關于充分條件、必要條件及充要條件的概念的理解和判斷6、 課前準備:由于這是充分條件與必要條件的概念課,文字信息量較普通的數學課要大得多,因此用軟件自制課件,以簡化教師板書工作,增加課堂教學的信息容量,保證學生的活動空間和思維
8、空間,努力提高單位教學效益.7、 教學過程:1、 感知概念課前準備工作時音樂欣賞我是一只魚;提問:魚離不開水,沒有水,魚就無法生存. 但只有水,夠嗎?引導探究:p:“有水” ;q : “魚能生存”.判斷“若p,則q”和“若q,則p”的真假.練習:寫出命題“若x a2 b2,則x 2ab ”的逆命題、否命題、逆否命題,并判斷它們的真假;寫出命題“若 ab =0 ,則 a =0 ”的逆命題、否命題、逆否命題,并判斷它們的真假 .設計意圖:從具體問題出發來引出數學概念更符合學生的認知規律.( 1) ( 2) 在這里起到承上啟下的作用,既復習了前面所學知識,又找準了學生知識結構上的生長點,為后面充分條
9、件和必要條件的學習做準備.感知概念、引出課題問題:能否改變的條件,使原命題變成真命題?設計意圖:這題有較大的思維空間,不同層次的學生都能在這個問題上有不同層次的施展?以此讓學生認識到命題中的條件與結論之間應該具備某種關系,為下面探究活動提出了問題,并引出課題 .以上兩題的解答可以發現有的命題真,有的命題假,即有的命題可以從條件推得結論,有的則不能;而另外也有命題只要結論成立,就一定不能少了命題給出的條件,但是沒有這個條件,結論不一定能成立?那么命題中的條件與結論到底有怎樣的關系呢?這是本節課要討論的問題一一充分條件與必要條件.2、 形成概念一般地,“若P,則q”是真命題,是指由p通過推理可以得
10、出q .這時,我們就說,由p可推 出q,記作“ p=q ”.學生練習:用“”和“=”符號表示“感知概念”中的(1 )和(2)及其逆命題.設計意圖:理解二. ”符號的含義,為引出定義奠定知識基礎 ?通過研究原命題,對建立在學生原有認知水平上“充分”這個感性化的詞匯獲得數學意義上的 認識,引出充分條件的定義;通過研究逆否命題,又讓學生理解了q 是 p 成立的“必需要有”的條件,引出必要條件的定義.設計意圖:通過以上的實例使學生親身感知概念的發生與形成過程,使充分、必要條件定義的引入順理成章,水到渠成,幫助學生突破難點1 ?通過以上分析,師生共同給出充分、必要條件的定義 ?定義:“p= q ”,也就
11、是條件 p “足以”保證或“充分”保證結論 q 成立,這時我們說p 是 q的充分條件(sufficient condition );從命題的角度看,“pn q ”,根據逆否命題與原命題的等價性, 既也就是如果沒有 q 成立,就一定沒有p 成立, q 成立是 p 成立“必須要有”的前提條件,我們說 q 是 p 的必要條件( necessary condition ) .嘗試初步運用,設計2 個探究問題:如果 p 是 q 的必要條件,那么應該有p= q 還是 q= p ?如何判斷p 是 q 的什么條件?設計意圖:以問題的形式,幫助學生突破難點2, 即如何判斷p 是 q 的什么條件?引導學生探究出結
12、論,即:p 可能 q 是的充分條件,也可能是必要條件?因此要判斷能否有p= q 或 q= p ?再回到前面的(1 )和(2)進行實踐操作?先判斷p 是 q 的什么條件,由學生完成,教師適當點評,之后再獨立判斷 q 是 p 的什么條件.設計意圖:因為已經有了前面原命題、逆命題的真假判斷,以及對推斷符號的理解,當學生的視線再回到(1 )和(2)時,他們的認識已螺旋式上升,達到一個新的高度,這樣,( 1 )和(2)既可以加深對定義的理解,又幫助學生感受在具體問題中如何判斷充要關系,解決問題的時候又可以發現新的知識點,學生完全可以獨立歸納出充分非必要、必要非充分以及充要條件的定義?由學生在實例中發現,
13、并自己給出充要條件的定義,更符合學生的認知規律.給出定義:一般地,如果既有p= q ,又有 q= p ,就記作p= q ?此時,我們說,p 是 q 的充分必要條件,簡稱充要條件(sufficient and necessary condition ) . 顯然,如果p 是 q 充要條件,那么q 也是 p 的充要條件. 概括地說,如果pu q ,那么 p 與 q 互為充要條件.例1完成下表pqp是q的什么條件q是p的什么條件X=1x2 4x 十 3 =0f (x) =xf (X)在(q,訟)上為增函數X為無理數x2為無理數兩個三角形全等這兩個三角形面積相等a >bac» bc判別
14、步驟:認清條件和結論;考察是否有幫助學生突破難點3.同時例1也作為課p=q和q= p,即原命題和逆命題的真假;下結論由學生自行歸納總結原命題逆命題p是q的p=>q (真)qh P (假)充分非必要條件pm (q (假)q= p(真)必要非充分條件pn q (真)qn p (真)充要條件pg q (假)g p (假)既不充分也不必要條件設計意圖:在理解定義的基礎上解決簡單問題,同時歸納判斷充要條件的方法與步驟,并強化判斷時先要確定誰是條件P,促進學生養成正確的思維習慣,內的操作評價,讓學生充分暴露思維障礙,幫助教師了解學生獲取知識的現狀,以便調整教學節奏3、 理解概念為幫助學生充分理解概念,設計2道發散題:例2下列條件中哪些是a b 0的充分不必要條件?A. a 0,b 0B. a 二 0,b : 0C. a 0, b : : 0 且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具品牌戰略規劃保密協議
- 航拍項目合作協議中關于版權歸屬與侵權責任界定補充條款
- 股權代持與員工績效考核及薪酬調整合同
- 新能源項目用地規劃及合規性評估咨詢協議
- 牛羊肉冷鏈銷售與配送一體化服務協議
- 體育賽事轉播權授權與賽事直播平臺技術升級合同
- 網紅奶茶品牌區域代理合作協議書
- 海外公司分支機構設立與法律顧問服務合同
- 跨國藝術品收藏鑒定評估與藝術品交易咨詢合同
- 生物質能源技術許可與項目實施綜合合作協議
- 浙江省現代化水廠評價標準
- MOOC 音樂導聆-山東大學 中國大學慕課答案
- 保安定期開展心理健康培訓
- 農行超級柜臺業務知識考試題庫(含答案)
- 免疫治療免疫相關不良反應的處理PowerPoint-演示文稿
- 研究生英語翻譯答案
- GB 15607-2023涂裝作業安全規程粉末靜電噴涂工藝安全
- 手表買賣合同協議書
- 2023門面裝修合同范本
- DB34-T 4170-2022 軟闊立木材積表
- 汽車租賃有限公司車隊及車輛管理制度
評論
0/150
提交評論