用函數的觀點看方程跟不等式教學設計資料_第1頁
用函數的觀點看方程跟不等式教學設計資料_第2頁
用函數的觀點看方程跟不等式教學設計資料_第3頁
用函數的觀點看方程跟不等式教學設計資料_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、用函數的觀點看方程與不等式教學設計觀美中學張少青函數和方程,函數與不等式,它們是幾個不同的概念,但它們之間有著密切的聯系,一個函數若有解析表達式,那么這個表達式就可看成是一個方程;一個二元方程,兩個變量存在著對應關系,如果這個對應關系是函數,那么這個方程可以看成是一個函數。許多有關方程、不等式的問題可以用函數的方法解決;反之,許多有關函數的問題也可以用方程和不等式的方法解決,用函數的觀點看方程與不等式,是學生應該學會的一種思想方法。【教學目標】1、理解一次函數與一元一次方程、一元一次不等式、二元一次方程組的關系,會根據一次函數的圖象解決方程與不等式的求解問題。2、學習用函數的觀點看待方程與不等

2、式的方法,初步感受用全面的觀點處理局部問題的思想。3、經歷方程和不等式與函數關系問題的探究過程,學習用聯系的觀點看待數學問題的辨證思想。【教學重點】一次函數與一元一次方程、一元一次不等式、方程組的關系的理解。【教學難點】對應關系的理解及實際問題的探究建模。【教學過程】一、創設情境同學們,你們熟悉龜兔賽跑的故事嗎?(請一學生簡述)請看屏幕,從圖象上看出這是幾百米賽跑?表示兔子的圖象是哪一條?兔子什么時候開始睡覺?什么時候烏龜追上了兔子?由兩條直線的交點坐標來確定相應的兩個解析式組成的方程組的解,實際上,一次函數是兩個變量之間符合一定關系的一種互相對應,互相依存。它與我們以前學過的一元一次方程,一

3、元一次不等式,二元一次方程組有著必然的聯系。今天我們將研究用函數的觀點看方程與不等式。(設計意圖;一、以學生熟悉的龜兔賽跑故事引入,然后用函數圖象形象說明了它們賽跑的過程,把一次函數與學生之間的距離拉近了。二、點明學習本節內容的必要性:(1)函數與方程、方程組、不等式有著必然的聯系;(2)用函數的觀點看待方程、方程組、不等式是我們學數學應該掌握的思想方法。)二、探討1、我們先來看下面的兩個問題有什么關系:(1)解方程2x+20=0.(2)當自變量為何值時,函數y=2x+20的值為零?問:對于2x+20=0和y=2x+20,從形式上看,有什么相同和不同的地方?從問題的本質上看,(1)和(2)有什

4、么關系?作出直線y=2x+20,看看(1)與(2)是怎樣的一種關系?(設計意圖:用具體的問題作對比,幫助學生理解;讓學生在探究過程中理解兩個問題的同一性。)揭示歸納:(1)和(2)實際上是同一個問題。由于任何一元一次方程都可以轉化為ax+b=0(a、b為常數,a*0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變量的值,從圖象上看,這相當于已知直線y=ax+b,確定它與x軸交點的橫坐標的值。2、以下兩個問題是不是同一個問題?(1)解不等式:2x-4>0(2)當x為何值時,函數y=2x-4的值大于0?問題:你如何利用圖象來說明(2)?(3) “解不等式2x-4

5、<0”可以與怎樣的一次函數問題是同一的?怎樣在圖象上加以說明?(設計意圖:當y取值從等于0變成了大于0,響應的x值也由一個值變成了一個范圍;如何從圖象上看,對學生來說需要思維的跳躍,這里安排(3)是及時的,使學生對y<0時x值的確定有進一步的理解。)歸納:由于任何一元一次不等式都可以轉化為ax+b>0或ax+b<0(a、b為常數,aw0)的形式,所以解一元一次不等式可以看作:當一次函數值大(小)于0時,求自變量相應的取值范圍。三、試試1、以下的兩個問題是同一個問題廳P方程或不等式問題一次函數問題1解方程7x+5=02當x為何值時,函數y=3x-6的值大(小)于0?32、

6、作出函數的y=-2x-5的圖象,觀察圖象回答下列問題:(1) x取何值時,-2x-5=0?(2) x取何值時,-2x-5>0?(3) x取何值時,-2x-5<0?(4) x取何值時,2x5<3?四、應用1、用畫函數的方法解不等式5x+4<2x+10解法1:原不等式化為3x-6<0,畫出直線y=3x-6,可以看出,當x<2時這條直線上的點在x軸的下方,即這時y=3x-6<0,所以不等式的解集為x<2.解法2:將原不等式的兩邊分別看作兩個一次函數,畫出直線y=5x+4與直線y=2x+10,可以看出,它們交點的橫坐標為2,當x<2時,對于同一個x

7、,直線y=5x+4的點在直線y=2x+10上相應點的下方,這是5x+4<2x+10,所以不等式的解集為x<2.強調:雖然像上面用一次函數圖象來解方程或不等式未必簡單,但是從函數角度看問題,能發現一次函數、一元一次方程與一元一次不等式之間的聯系,能直觀地看到怎樣用圖形來表示方程的解與不等式的解,這種用函數觀點認識問題的方法,對于繼續學習數學很重要。2、一家電信公司給顧客提供兩種上網收費方式:方式A以每分0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分0.05元的價格按上網時問計費。如何選擇收費方式能使上網者更合算?分析:計費與上網時間有關,所以可設上網時間為x分,分別寫

8、出兩種計費方式的函數模型,然后再做比較。你能用兩種方法解決嗎?(設計說明:本例不僅僅是一次函數與二元一次方程組的關系的應用,而且,涉及到數學建模及一次函數與方程不等式之間的關系等問題,是本節內容的集中體現,是對一次函數與方程不等式關系的綜合應用。)3、新龜兔賽跑:兔子失敗后吸取了教訓,分析了失敗的原因是因為自己太輕敵,太驕傲了,準備爭口氣回來。這次舉行的是100米賽跑,兔子讓烏龜先跑30米,然后自己才開始跑,已知烏龜每分鐘跑10米,兔子每分鐘跑15米,(列出函數關系式,作出函數圖象,觀察函數圖象)回答下列問題:(1)何時烏龜跑在兔子前面?(2)何時兔子跑在烏龜前面?(3)兔子是否能追上烏龜?什么時候?(4)誰先跑過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論