大學物理振動(補充題)_第1頁
大學物理振動(補充題)_第2頁
大學物理振動(補充題)_第3頁
大學物理振動(補充題)_第4頁
大學物理振動(補充題)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、補充4-1 符合什么規律的運動才是諧振動?分別分析下列運動是不是諧振動:(1)拍皮球時球的運動;(2)如題4-1圖所示,一小球在一個半徑很大的光滑凹球面內滾動(設小球所經過的弧線很 短)題4-1圖解:要使一個系統作諧振動,必須同時滿足以下三個條件:一 ,描述系統的各種參量,如質量、轉動慣量、擺長等等在運動中保持為常量;二,系統 是在 自己的穩定平衡位置附近作往復運動;三,在運動中系統只受到內部的線性回復力的作用 或者說,若一個系統的運動微分方程能用描述時,其所作的運動就是諧振動(1)拍皮球時球的運動不是諧振動第一,球的運動軌道中并不存在一個穩定的平衡位置; 第二,球在運動中所受的三個力:重力,

2、地面給予的彈力,擊球者給予的拍擊力,都不是線 性回復力(2)小球在題4-1圖所示的情況中所作的小弧度的運動,是諧振動顯然,小球在運動過程中 ,各種參量均為常量;該系統(指小球凹槽、地球系統)的穩定平衡位置即凹槽最低點,即系統勢能最小值位置點;而小球在運動中的回復力為,如題4-1圖(b)所示題 中所述,故0,所以回復力為.式中負號,表示回復力的方向始終與角位移的方向相反即小球在點附近的往復運動中所受回復力為線性的若以小球為對象,則小球在以為圓心的豎直平面內作圓周運動,由牛頓第二定律,在凹槽切線方向上有令,則有4-2 勁度系數為和的兩根彈簧,與質量為的小球按題4-2圖所示的兩種方式連 接,試證明它

3、們的振動均為諧振動,并分別求出它們的振動周期題4-2圖解:(1)圖(a)中為串聯彈簧,對于輕彈簧在任一時刻應有,設串聯彈簧的等效倔強系數為等效位移為,則有又有 所以串聯彈簧的等效倔強系數為即小球與串聯彈簧構成了一個等效倔強系數為的彈簧振子系統,故小球作諧振動其振動周期為(2)圖(b)中可等效為并聯彈簧,同上理,應有,即,設并聯彈簧的倔強系數為,則有故 同上理,其振動周期為4-3 如題4-3圖所示,物體的質量為,放在光滑斜面上,斜面與水平面的夾角為,彈簧的倔強系數為,滑輪的轉動慣量為,半徑為先把物體托住,使彈簧維持原長,然 后由靜止釋放,試證明物體作簡諧振動,并求振動周期 題4-3圖解:分別以物

4、體和滑輪為對象,其受力如題4-3圖(b)所示,以重物在斜面上靜平衡時位置為坐標原點,沿斜面向下為軸正向,則當重物偏離原點的坐標為時,有 式中,為靜平衡時彈簧之伸長量,聯立以上三式,有令 則有故知該系統是作簡諧振動,其振動周期為4-4 質量為的小球與輕彈簧組成的系統,按的規律作諧振動,求:(1)振動的周期、振幅和初位相及速度與加速度的最大值;(2)最大的回復力、振動能量、平均動能和平均勢能,在哪些位置上動能與勢能相等?(3)與兩個時刻的位相差;解:(1)設諧振動的標準方程為,則知:又 (2) 當時,有,即 (3) 4-5 一個沿軸作簡諧振動的彈簧振子,振幅為,周期為,其振動方程用余弦函數表示如果

5、時質點的狀態分別是:(1);(2)過平衡位置向正向運動;(3)過處向負向運動;(4)過處向正向運動試求出相應的初位相,并寫出振動方程解:因為 將以上初值條件代入上式,使兩式同時成立之值即為該條件下的初位相故有4-6 一質量為的物體作諧振動,振幅為,周期為,當時位移為求:(1)時,物體所在的位置及此時所受力的大小和方向;(2)由起始位置運動到處所需的最短時間;(3)在處物體的總能量解:由題已知 又,時,故振動方程為 (1)將代入得方向指向坐標原點,即沿軸負向(2)由題知,時,時 (3)由于諧振動中能量守恒,故在任一位置處或任一時刻的系統的總能量均為4-7 有一輕彈簧,下面懸掛質量為的物體時,伸長

6、為用這個彈簧和一個質量為的小球構成彈簧振子,將小球由平衡位置向下拉開后 ,給予向上的初速度,求振動周期和振動表達式解:由題知而時, ( 設向上為正)又 4-8 圖為兩個諧振動的曲線,試分別寫出其諧振動方程題4-8圖解:由題4-8圖(a),時,即 故 由題4-8圖(b)時,時,又 故 4-9 一輕彈簧的倔強系數為,其下端懸有一質量為的盤子現有一質量為的物體從離盤底高度處自由下落到盤中并和盤子粘在一起,于是盤子開始振動(1)此時的振動周期與空盤子作振動時的周期有何不同?(2)此時的振動振幅多大?(3)取平衡位置為原點,位移以向下為正,并以彈簧開始振動時作為計時起點,求初位相并寫出物體與盤子的振動方

7、程解:(1)空盤的振動周期為,落下重物后振動周期為,即增大(2)按(3)所設坐標原點及計時起點,時,則碰撞時,以為一系統動量守恒,即則有 于是(3) (第三象限),所以振動方程為4-10 有一單擺,擺長,擺球質量,當擺球處在平衡位置時,若給小球一水平向右的沖量,取打擊時刻為計時起點,求振動的初位相和角振幅,并寫出小球的振動方程解:由動量定理,有 按題設計時起點,并設向右為軸正向,則知時, 0 又 故其角振幅小球的振動方程為4-11 有兩個同方向、同頻率的簡諧振動,其合成振動的振幅為,位相與第一振動的位相差為,已知第一振動的振幅為,求第二個振動的振幅以及第一、第二兩振動的位相差題4-11圖解:由題意可做出旋轉矢量圖如下由圖知 設角,則即 即,這說明,與間夾角為,即二振動的位相差為.4-12 試用最簡單的方法求出下列兩組諧振動合成后所得合振動的振幅:(1) (2)解: (1) 合振幅 (2) 合振幅 4-13 一質點同時參與兩個在同一直線上的簡諧振動,振動方程為試分別用旋轉矢量法和振動合成法求合振動的振動幅和初相,并寫出諧振方程。解: 其振動方程為(作圖法略)*4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論