



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、考試大:說明:2011考研數學二大綱無變化,下面是2010年考研數學二大綱供廣大學員備考參考。2011年全國碩士研究生入學統一考試數學考試大綱-數學二考試科目:高等數學、線性代數考試形式和試卷結構一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘二、答題方式答題方式為閉卷、筆試三、試卷內容結構高等教學 78線性代數 22%四、試卷題型結構試卷題型結構為:單項選擇題 8小題,每小題4分,共32分填空題 6小題,每小題4分,共24分解答題(包括證明題) 9小題,共94分高 等 數 學一、函數、極限、連續考試內容函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、
2、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關系的建立 數列極限與函數極限的定義及其性質 函數的左極限與右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個準則:單調有界準則和夾逼準則 兩個重要極限: , 函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質考試要求1理解函數的概念,掌握函數的表示法,并會建立應用問題的函數關系2了解函數的有界性、單調性、周期性和奇偶性3理解復合函數及分段函數的概念,了解反函數及隱函數的概念4掌握基本初等函數的性質及其圖形,了解初等函數的概念5理解極限的概念,理解函數左極限
3、與右極限的概念以及函數極限存在與左極限、右極限之間的關系6掌握極限的性質及四則運算法則7掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法8理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限 9理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型10了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質二、一元函數微分學考試內容導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系平面曲線的切線和法線導數和微分的四則運算基本初等函數的導數復合函數、
4、反函數、隱函數以及參數方程所確定的函數的微分法高階導數一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑考試要求1理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系2掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分3了解高階導數的概念,會求簡單函
5、數的高階導數4會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數5理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西( Cauchy )中值定理6掌握用洛必達法則求未定式極限的方法7理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用8會用導數判斷函數圖形的凹凸性(注:在區間 內,設函數 具有二階導數當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形9了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑
6、三、一元函數積分學考試內容原函數和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數及其導數牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數、三角函數的有理式和簡單無理函數的積分反常(廣義)積分定積分的應用考試要求1理解原函數的概念,理解不定積分和定積分的概念2掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法3會求有理函數、三角函數有理式和簡單無理函數的積分4理解積分上限的函數,會求它的導數,掌握牛頓一萊布尼茨公式5了解反常積分的概念,會計算反常積分6掌握
7、用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數平均值四、多元函數微積分學考試內容多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念有界閉區域上二元連續函數的性質多元函數的偏導數和全微分 多元復合函數、隱函數的求導法二階偏導數多元函數的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算考試要求1了解多元函數的概念,了解二元函數的幾何意義2了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質3了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導
8、數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數4了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決一些簡單的應用問題5了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標)五、常微分方程考試內容常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程高于二階的某些常系數齊次線性微分方程簡單的二階常系數非齊次線性微分方程微分方程的簡單應用
9、考試要求1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程3會用降階法解下列形式的微分方程: 和 4理解二階線性微分方程解的性質及解的結構定理5掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程6會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線性微分方程7會用微分方程解決一些簡單的應用問題線 性 代 數一、行列式考試內容行列式的概念和基本性質行列式按行(列)展開定理考試要求1了解行列式的概念,掌握行列式的性質 2會應用行列式的性質和行列式按行(列)展開定理計算
10、行列式二、矩陣考試內容矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價 分塊矩陣及其運算考試要求1理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質2掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質3理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣4了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩
11、陣的秩和逆矩陣的方法5了解分塊矩陣及其運算三、向量考試內容向量的概念向量的線性組合和線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量的內積線性無關向量組的的正交規范化方法考試要求1理解 維向量、向量的線性組合與線性表示的概念2理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法3了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩 4了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關系5了解內積的概念,掌握線性無關向量組正交規范化的施密特(Schmidt)方法四、線性方
12、程組考試內容線性方程組的克萊姆(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解非齊次線性方程組的通解考試要求1會用克萊姆法則2理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件3理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組基礎解系和通解的求法4理解非齊次線性方程組的解的結構及通解的概念5會用初等行變換求解線性方程組五、矩陣的特征值及特征向量考試內容矩陣的特征值和特征向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣考試要求1理解矩陣的特征值和特征向量的概念及性質,會求矩陣特征值和特征向量2理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣3理解實對稱矩陣的特征值和特征向量的性質六、二次型考試內容二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標準形和規范形 用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性考試要求1了解二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《勞動與技術》課外實踐活動計劃
- 加油站消防安全培訓及檢查計劃
- 五年級語文下冊跨學科融合計劃
- 六年級音樂欣賞與實踐教學計劃
- 小學乒乓球社團比賽選手培養計劃
- 2025-2030年中國化妝品工業用麻行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030年中國保險投資行業市場深度調研及投資前景與投資策略研究報告
- 2025-2030年中國依莫昔布行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030年中國低熱量快餐行業市場現狀供需分析及投資評估規劃分析研究報告
- 幼兒園大班下學期心理健康工作計劃
- 口腔科各項規章制度
- 傳染病的預防和醫院感染的防控
- 年加工2萬噸再生鋁項目可行性研究報告建議書
- 第20課 《飛奪瀘定橋》說課稿-2024-2025學年統編版語文(五四學制)六年級上冊
- 眼科手術的安全管理
- 保安公司戰略發展規劃
- 【MOOC】外國教育史-河南大學 中國大學慕課MOOC答案
- 抗腫瘤藥物管理工作組成員及職責
- 2024年遼寧省中考生物真題卷及答案解析
- 第47屆世界技能大賽江蘇省選拔賽計算機軟件測試項目技術工作文件
- 2024年湖南高考真題化學試題(解析版)
評論
0/150
提交評論