異面直線所成的角的求法持續性評價設計及檢驗提示單_第1頁
異面直線所成的角的求法持續性評價設計及檢驗提示單_第2頁
異面直線所成的角的求法持續性評價設計及檢驗提示單_第3頁
異面直線所成的角的求法持續性評價設計及檢驗提示單_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、【作業表單4:持續性評價設計及檢驗提示單】單元學習主題異面直線所成的角的求法評價設計熱身練習如圖128的正方體中,E是AD的中點(1)圖中哪些棱所在的直線與直線BA成異面直線? (2)求直線BA和CC所成的角的大小;(3)求直線AE和CC所成的角的正切值;(4)求直線AE和BA所成的角的余弦值【探究學習】例1長方體ABCDA1B1C1D1中,若AB=BC=3,AA1=4,求異面直線B1D與BC1所成角的余弦值。選題意圖,通過該題,讓學生進一步理解異面直線所成角的概念,熟練掌握異面直線所成角的求法。分析:構造三角形找中位線,然后利用中位線的性質,將異面直線所成的角轉化為平面問題,解三角形求之。解

2、法一:如圖連結B1C交BC1于0,過0點作OEDB1,則BOE為所求的異面直線DB1與BC1所成的角。連結EB,由已知有B1D=,BC1=5,BE=,BOE= 解法二:如圖,連DB、AC交于O點,過O點作OEDB1,過E點作EFC1B,則OEF或其補角就是兩異面直線所成的角,過O點作OMDC,連結MF、OF。則OF=,OEF=,解法三:如圖,連結D1B交DB1于O,連結D1A,則四邊形ABC1D1為平行四邊形。在平行四邊形ABC1D1中過點O作EFBC1交AB、D1C1于E、F,則DOF或其補角就是異面直線DB1與BC1所成的角。在ADF中DF=,DOF=。解法四:如圖,過B1點作BEBC1交

3、CB的延長線于E點。則DB1E就是異面直線DB1與BC1所成角,連結DE交AB于M,DE=2DM=3,DB1E= 解法五:如圖,在平面D1DBB1中過B點作BEDB1交D1B1的延長線于E,則C1BE就是異面直線DB1與BC1所成的角,連結C1E,在B1C1E中,C1B1E=135°,C1E=3,C1BE=。分析:在已知圖形外補作一個相同的幾何體,以例于找出平行線。BMANCS例2 S是正三角形ABC所在平面外的一點,如圖SASBSC,且ASBBSCCSA,M、N分別是AB和SC的中點求異面直線SM與BN所成的角的余弦值證明:連結CM,設Q為CM的中點,連結QN 則QNSMQNB是S

4、M與BN所成的角或其補角連結BQ,設SCa,在BQN中BN NQSMa BQCOSQNB例3 如圖,在直三棱柱ABCA1B1C1中,BCA90°,M、N分別是A1B1和A1C1的中點,若BCCACC1,求BM與AN所成的角解:連接MN,作NGBM交BC于G,連接AG,易證GNA就是BM與AN所成的角設:BCCACC12,則AGAN,GNBM,cosGNA。【基礎檢測】1如圖,在正方體中,E、F分別是、CD的中點求與所成的角。證明:取AB中點G,連結A1G,FG, 因為F是CD的中點,所以GFAD,又A1D1AD,所以GFA1D1,故四邊形GFD1A1是平行四邊形,A1GD1F。設A1G與AE相交于H,則A1HA是AE與D1F所成的角。因為E是BB1的中點,所以RtA1AGABE, GA1A=GAH,從而A1HA=90°,即直線AE與D1F所成的角為直角。cosABF持續性評價設計檢驗提示檢驗指標實現程度1.評價標準的設計是否與深度學習目標一致? 是否指向學生的理解和思維的發展和提升?是2. 評價活動是否貫穿學習活動始終?是否向學生公開了評價的標準?是3. 評價證據是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論