



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、專題25 立體幾何中綜合問題 命題規(guī)律內(nèi) 容典 型棱錐與球的切接問題2020年高考全國卷理數(shù)10棱柱(圓柱)與球的切接問題2020年高考天津卷5研究球的截面問題2020高考山東卷以傳統(tǒng)文化為載體考查幾何體的性質(zhì)2019年高考全國卷理數(shù)以幾何體中空間角為條件研究幾何體的截面問題2018年高考全國卷理數(shù)命題規(guī)律一 棱錐與球的切接問題【解決之道】(1)三條側(cè)棱互相垂直的三棱錐的外接球:如果三棱錐的三條側(cè)棱互相垂直并且相等,那么可以補形為一個正方體,正方體的外接球的球心就是三棱錐的外接球的球心;如果三棱錐的三條側(cè)棱互相垂直但不相等,那么可以補形為一個長方體,長方體的外接球的球心就是三棱錐的外接球的球心
2、.(2)一條側(cè)棱垂直于底面的棱錐的外接球問題,可以將其補成以棱錐的底面為底面、垂直與底面的側(cè)棱為高的直棱柱,則補成直棱柱的外接球即為該三棱錐的外接球.(3)正棱錐(圓錐)的外接球問題,已知正棱錐的底面的外接圓半徑為、高為,外接球的半徑為,則.(4)已知三棱錐中某兩個面所成二面角為的外接球問題,關(guān)鍵是作出球心,即分別過兩個半平面的截面圓的圓心作截面圓的垂線,垂線的交點即為球心,再利用球的截面性質(zhì),即可求出求的半徑.(5)對兩個直角三角形共斜邊的三棱錐的外接球問題,則直角三角形的斜邊為球的直徑.(6)對對棱相等的三棱錐的外接球問題,將其看成在長方體中面的對角線,則長方體的外接球即該三棱錐的外接球.
3、(7)求一個棱錐內(nèi)切球的半徑,可以根據(jù)球心到各個面的距離相等以及棱錐的體積列式得出也可以先找準切點,通過作截面來解決,作截面時主要抓住棱錐過球心的對角面來作【三年高考】1.【2020年高考全國卷理數(shù)10】已知為球的球面上的三個點,為的外接圓若的面積為,則球的表面積為( )A B C D 2.【2020年高考全國卷文數(shù)11理數(shù)10】已知是面積為的等邊三角形,且其頂點都在球的表面上,若球的表面積為,則球到平面的距離為 ( )ABCD3.【2019年高考全國卷理數(shù)】已知三棱錐PABC的四個頂點在球O的球面上,PA=PB=PC,ABC是邊長為2的正三角形,E,F(xiàn)分別是PA,AB的中點,CEF=90
4、176;,則球O的體積為( )ABCD4.【2018年高考全國卷理數(shù)】設(shè)是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為( )ABCD 命題規(guī)律二 棱柱(圓柱)與球的切接問題【解決之道】(1)長、寬、高分別為a,b,c的長方體的體對角線長等于其外接球的直徑,即2R.(2)直棱柱(圓柱)的外接球:已知直棱柱的底面半徑為,高為,則其外接球半徑為【三年高考】1.【2020年高考天津卷5】若棱長為的正方體的頂點都在同一球面上,則該球的表面積為( )ABCD命題規(guī)律三 研究球的截面問題【解決之道】解決此類問題的關(guān)鍵為作出截面,作截面的關(guān)鍵在作截線,方法如下:若已知兩點在同
5、一平面內(nèi),只要連接這兩點,就可以得到截面與多面體的的一個面的截線;若面上只有一個已知點,應(yīng)設(shè)法在同一平面內(nèi)找出第2個確定的點;若兩個已知點分別在相鄰的面上,應(yīng)找出這兩個平面的交線與截面的交點;兩個平行平面的一個平面與截面有絞線,另一個平面上只有一個已知點,則按面面平行得截面與平面的交線;若有一點在面上而不在棱上,則可通過作輔助平面化為棱上的點的問題;若已知點在體內(nèi),可通過作輔助平面化為面上的點的,再化為棱上的點的問題來解決.【三年高考】1.【2020年高考山東卷16】已知直四棱柱的棱長均為,以為球心,為半徑的球面與側(cè)面的交線長為 命題規(guī)律四 以傳統(tǒng)文化為載體考查幾何體的性質(zhì)【解決之道】解決此類
6、問題,首項要認真讀題,挖掘出所蘊含的幾何體及其有關(guān)量,轉(zhuǎn)化為數(shù)學(xué)問題,然后利用幾何體的有關(guān)知識求解.【三年高考】1.【2019年高考全國卷理數(shù)】中國有悠久的金石文化,印信是金石文化的代表之一印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體半正多面體體現(xiàn)了數(shù)學(xué)的對稱美圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1則該半正多面體共有_個面,其棱長為_(本題第一空2分,第二空3分).命題規(guī)律五 以幾何體中空間角為條件研究幾何體的截面問題【解決之道】解決此類問題的關(guān)鍵為作出截面,作截面的關(guān)鍵在作截線,方法如下:若已知兩點在同一平面內(nèi),只要連接這兩點,就可以得到截面與多面體的的一個面的截線;若面上只有一個已知點,應(yīng)設(shè)法在同一平面內(nèi)找出第2個確定的點;若兩個已知點分別在相鄰的面上,應(yīng)找出這兩個平面的交線與截面的交點;兩個平行平面的一個平面與截面有絞線,另一個平面上只有一個已知點,則按面面平行得截面與平面的交線;若有一點在面上而不在棱上,則可通過作輔助平面化為棱上的點的問題;若已知點在體內(nèi),可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品統(tǒng)一配送管理制度
- 藥品銷售績效管理制度
- 藥店加盟合同管理制度
- 藥店星級員工管理制度
- 菏澤思源學(xué)院管理制度
- 論述清朝官吏管理制度
- 設(shè)備制造公司管理制度
- 設(shè)備強制報廢管理制度
- 設(shè)備日常運行管理制度
- 設(shè)備維修電工管理制度
- 醫(yī)師職業(yè)素養(yǎng)課件
- 電網(wǎng)工程設(shè)備材料信息參考價2025年第一季度
- 2024年安徽省初中學(xué)業(yè)水平考試生物試題含答案
- 軟膠囊干燥除濕轉(zhuǎn)籠用戶需求URS
- 中國科學(xué)院生態(tài)環(huán)境研究中心-環(huán)境工程A-927歷年真題2010-2015
- 漢語拼音音節(jié)表帶聲調(diào)
- 操作系統(tǒng)期末考試試卷及答案
- 中國銀行營業(yè)網(wǎng)點基礎(chǔ)服務(wù)禮儀規(guī)范
- SCR脫硝反應(yīng)器尺寸修改后
- LANTEK蘭特鈑金軟件手冊(上)
- 混凝土強度增長曲線
評論
0/150
提交評論