電路理論華科電氣Chapter7FirstOrderCircuits2_第1頁
電路理論華科電氣Chapter7FirstOrderCircuits2_第2頁
電路理論華科電氣Chapter7FirstOrderCircuits2_第3頁
電路理論華科電氣Chapter7FirstOrderCircuits2_第4頁
電路理論華科電氣Chapter7FirstOrderCircuits2_第5頁
已閱讀5頁,還剩32頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、7.5 the zero-state response if all of the initial conditions have zero value, then the circuit is said to be in the zero-state, and the solution to nonzero inputs for the circuit is known as the zero-state response. (零狀態響應零狀態響應)zero-state response of an rc circuitk+ucacicabt=0t=0:uc(0)=0+ucuscicabr0

2、ccsdurcuutdtthe particular solution:it is usually called the forced response or the steady-state response.uc ()=us ,uc p = uc ()=us rusc+ucithe homogeneous solution:0ccdurcudtthe characteristic equation: rcs+1=0the characteristic value:1src trcstchuaeaethe homogeneous solution is usually called the

3、natural or transient response.uc (0+)=uc (0 )=0=us +a a= us0,)(tevvtvtsscteyyty)()()(0tccpchsuuuuaetthe general form of the step response of rc circuits:us-us usriuc0tuc=us(1- e )-rct(t 0)i=-rctusre(t 0)1 zero-state response of dc input:uc= us us e-rct(t 0)特解特解齊次解齊次解穩態分量穩態分量暫態分量暫態分量+-uc+-crius(2)dis

4、cussion7.6 step response circuitnwhen the dc source is suddenly applied, the signal of the source can be modeled as a step function, the response is known as a step response.the step response of a circuit is its behavior when the excitation is the step function, which may be a voltage or a current s

5、ource.7.6.1 step response of rc circuitsk+ucacicabt=0+ucuscicabrus1(t)t=0:uc(0)=u00ccsdurcuutdt its solution includes two parts : the particular solution and the homogeneous solution.complete response: external source and initial condition of the storage element the particular solution:it is usually

6、 called the forced response or the steady-state response.uc ()=us ,uc p = uc ()=us rusc+ucithe homogeneous solution:0ccdurcudtthe characteristic equation: rcs+1=0the characteristic value:1src trcstchuaeaethe homogeneous solution is usually called the natural or transient response.uc (0+)=uc (0 )=u0=

7、us +a a= u0 us0,)()(0teuuututsscteyyyty)()0()()(0tccpchsuuuuaetthe general form of the step response of rc circuits:complete response例例ucusc12r+-u0us u0uc(0+)=u0rc=usducdt+(t 0)ucusuc=(u0 us)e-rct+there are two ways to excite the circuit:by initial conditions of the storage elements in the circuits.

8、by independent sources.1、two ways to determine complete response:(1)to linear circuit:teyyyty)() 0()()(teyyty)()()(complete responsezero_state responsezero_input responseteyty)0()(complete response = zero-input response + zero-state response.zero_input response is a special complete response when y(

9、 )=0;zero_state response is a special complete response when y( 0 )=0;y(t) = yh(t) + yp(t)自由自由分量分量強制強制分量分量 ty(t)= ke+ yp(t)暫態暫態響應響應穩態穩態響應響應(2) to linear circuit, complete response=natural response+forced responseteyyyty)()0()()(teyyyty)()0()()(thus, to find the step response requires three things:th

10、e initial value y(0+);the final value y( );1. the time constant ;(2) 與輸入無關,歸結為求由電容元件或電感元件觀與輸入無關,歸結為求由電容元件或電感元件觀 察的入端電阻察的入端電阻rlr=rc=關于關于uc(0-),il(0-) 和和 uc(0+),il(0+) (3) y(0+) uc(0-),il(0-) uc(0+),il(0+)確定其它確定其它變量的初始值變量的初始值(1) y( ) 歸結為求解電阻網絡(電容元件相當于開路,歸結為求解電阻網絡(電容元件相當于開路, 電感元件相當于短路)電感元件相當于短路)three f

11、actors:switch s is closed at t=0, uc(0-)=2v, calculate the response uc.+u-icccutucu ddciuiu 1212164dd4 ccutu1044 ppv5 . 14/6 cutcaeu tcau e5 . 1 0)( v e5 . 05 . 1 tutci12i1+2v+1 1 1 0.8fuc suc (v)t1.5oexample:method 1:reduce the circuit at first.s 18 . 0)25. 01( rc v 5 . 1)(cu0)( v e5 . 05 . 1 tutci

12、12i1+2v+1 1 1 0.8fuc s+1.5v+0.25 1 0.8fuc smethod 2: ty(t)= y(0+) - y( )e+ y( )+ul2usirl2l1k+ ul1 例:l1=1mh,l2=2mh,r=3k,us=3v,t=0 時 k 閉合,求零狀態響應 ul1與 ul2。l=l1+l2=3mh61 10lsr 61010tiemat 6610101122,20ttlldidiulevulevtdtdtmail1)(drill 1. calculate uc.3a100 50 0.3f+-ucuc(0)=150vuc(0+)=150v=0.3 5000/150=1

13、0suc=100 + 50e0.1t (t 0)uc( )=3 5000/150=100v ty(t)= y(0+) - y( )e+ y( )10ma1k +-1k 2k 10v+-ulil1hdrill 2. calculate ul.il(0)=5mail(0+)=5mail( )=5+5=10maul(0+)=5vul( )=0 =103sil=10 5e1000t maul=5e1000t v5ma+-2k 2k 10v+-ul+-10v(t=0+) ty(t)= y(0+) - y( )e+ y( )+-15 10 30v+-ucil3 fik2mh5 drill 3. calcu

14、late uc, il, ik.iuc(0)=20vil(0)=1auc(0+)=20vil(0+)=1ai (0+)=20/15=4/3auc( )=1.2 15=18vi( )=30/25=1.2ail( )=0 c=3 106 150/25=18 106 s l=2 103/5=1/2500 suc=18+2e v106t18il=e2500t ai k=1.2+ e e2500t a215106t18 ty(t)= y(0+) - y( )e+ y( )例:us=6v,r1=r2=1,c =0.5f,原k1、k2打開,c 上無電荷;t=0 時k1閉合,求uc (t),又當 t=2s 時

15、,k2又閉合,求 uc(t)。usk1r1c+ uc k2r2圖(a)usr1c+ uc r2圖(b)0t2, equivalent circuitsolution:uc( )=us=6v,uc (0+)=uc (0)=0,1=c(r1+r2)=0.52=1susk1r1c+ uc k2r2圖(a)usr1c+ uc r2圖(b)02),1 (6)()0()()(teeuuututtcccct=2s:uc (2)=66e2=5.19 vuc ( )=6v,uc (2+)=uc (2)=5.19 v,2=r1c=0.5susk1r1c+ uc k2r2圖(a)usr1c+ uc 圖(c)2,81

16、. 06)()2()()()2(2teeuuututtcccc+u-cn+us-+u*-ln+us-fig.afig.bn is a linear resistive circuit, in fig.a, c=1f, uc(0)=0, us=u0, u=(0.75-e-2t)v;in fig.b, l=1h, il(0 )=0, calculate u*.+-rc1c2+-u1(0) u2(0)u1u2+-i1usrsrl2l1i2special cases:已知:已知:vurrhlhls6,1,2,02. 0,01. 02121 并并定定性性畫畫出出波波形形。求求:)(),(21titi解:

17、此題為初始值躍變情況解:此題為初始值躍變情況aiai0)0(,3)0(21 )0()0(21 ii電流發生躍變電流發生躍變s(t =0)r1r2l1l2i1i2us)0()0()0()0(22112211 ilililil回路磁鏈守恒回路磁鏈守恒allililii103. 0301. 0)0()0()0()0(21221121 srrllaii01. 0,2126)()(212121 aetitit100212)()( 12i20ti13vettdidlutl100111)(02. 0 vettdidlutl1002222)(02. 0 slluuuirir 21221162)(02. 0)(

18、02. 0224100100100100 ttttetetee 電容電壓初值一定會發生躍變。電容電壓初值一定會發生躍變。解解 v1)0(1 euc0)0(2 cu合合k前前)0()0()0(21 cccuuu合合k后后 已知圖中已知圖中e=1v , r=1 , c1=0.25f , c2=0.5f 。求:求: uc1 、 uc2 、 ic1 和和 ic2 并畫出波形。并畫出波形。 )0()0()0()0(22112211 ccccucucucuc)0()()0()0(212211 cccuccucuc節點電荷守恒節點電荷守恒q(0+)= q(0-)erc1c2+-uc1+-uc2k(t=0)i

19、ic1ic2+v315 . 025. 0125. 0)0(211 ccecuc可解得可解得uc( ) = 1v 0321)131(1)(3434teetuttc = r (c1+c2) s43 0)0(1)0(021 ccuut)(92)(61)(98)()321()(41)(98)()321()(41dd34343434111tettetttetettucittttc )()321()()(341tettutc )()321()(342tetutc uc2ut01/31uc1-1/6 2/9ic1it 4/91/6ic2tucicdd222 )()321()(342tetutc )()321

20、()()(341tettutc )(92)(61341tetitc )(94)(6134tett )(98)()321(2134tett iic1ic2i 無沖激無沖激7.7 first_order op amp circuitsan op amp circuit containing a storage element will exhibit first_order behavior.examples: differentiators and integrators c+_uo_+ +_uirici- -u- -irturcud1io r+_uo_+ +_uiciri- -u- -icdtdvrcvioanalyze first_order op amp circuits nclassical way: write the circuit equation in the first_order differential form at first, get the solution.nuse the general form of the complete response of the first_order circuits. teyyyty)()0()()(drill

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論