



全文預覽已結束
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
VAMA:aversatileweb-basedtoolforvariabilityanalysisinmultiply-alignedaminoacidsequencesVAMA:VariabilityAnalysisofMultipleAlignmentsAditiGupta,AridamanPanditandSomdattaSinhaMathematicalModelingandComputationalBiologyGroup,CentreforCellularandMolecularBiology(CSIR)Hyderabad500007,IndiaEmail:sinhaccmb.res.inAbstractQuantifyingresiduevariabilityateachcolumninamultiplesequencealignmentofaminoacidshelpsinindicatingtheirsimilarities,andisusefultohighlightinformationaboutthesignificancesofeachpositionfromtheperspectiveoftheirstructure,function,andevolution.Itisbecomingincreasinglyclearthatthegroupsofaminoacidsthatallowconservedreplacementvarywiththepositionoftheresidueintheprotein.Mostmultiplealignmentalgorithmscatertogeneralusersandhencedonotaddressthisspecificfeature.Atoolforscoringvariabilityinmultiply-alignedaminoacidsequences,thatallowsdifferentconservationgroups,ishighlydesirable.VAMA(VariabilityAnalysisofMultipleAlignments)isasimpleyetversatileprogramthatcalculatesandplotsresiduevariabilityinagivensetofalignedsequencesbasedonknownconservationgroupsspecificfordifferentfunctionallyimportantregionsofaprotein,andalsoallowsuser-definedgroupsfornewdiscoveries.VAMAisavailableat84/VAMA/Overview.htmlKeywords-MultipleSequenceAlignment,VariabilityAnalysis,ResidueConservationGroupsI.INTRODUCTIONAlignmentofaminoacidsequencesiswidelyappliedtoidentifyconservationofresidues1.Variabilityisameasureoftheextentofvariationofaminoacidsatapositioninmultiplesequencealignment.Functionallyimportantresiduesareknowntoexhibithigherconservation,orlowervariability.Multiplesequencealignment(MSA)toolsalignsequencesbasedonsomepredeterminedclassificationofaminoacids,dependingontheirphysicochemicalproperties2.Recentstudieshaveshownthatthesamegroupofaminoacidsmaynotalwaysbeuseful,assequenceconservationclassificationsvarywiththestructureandfunctionaloftheprotein.Forexample,differentclassificationshavebeenshowntoexistforresiduesinvolvedinligandbinding3,inprotein-proteininteractioninterfaces4,inmaintainingstructure5,andindeterminingproteinfunctionalspecificity6-8.ClassificationbyMirnyandShakhnovich(MS)wasintendedforproteinstructurecores6;Williamsons(W)wastailoredtodealwithtransporterproteins8,whileGuharoyandChakrabarti(GC)classificationwasmeantforthestudyofinterfacialaminoacids4.ThissuggeststhatdifferentsubstitutionclassificationsshouldbeappliedinMSAbaseduponstructure/functionoftheproteins.Programmesavailableforstudyingconservationorvariabilityinmultiplealignmentsbasedondifferentscoringmethodsarerathercomplex9,andnoneofthemconsideralltheabove-mentionedposition-specificfeaturesinproteins10-15.Atoolforscoringvariabilityinmultiply-alignedaminoacidsequences,thatissimplebutaddressthisspecificfeatureofallowingdifferentconservationgroups,ishighlydesirable.Wehavedevelopedaweb-basedprogram(VAMA)thatquantifiesthevariabilityoftheresiduesateachalignedpositioninMSAusingasimplesymboldiversityscore16.Here,alldifferentaminoacidresiduespresentinaparticularcolumnofthealignedsequencesareconsidered,andthescore,v,iscalculatedusingthesumofthefrequencyofeachresidueas()1211iinNvN=(1)where,niisthefrequencyofeachresidue,andNthetotalnumberofresiduesatthisposition.Thesumisoverallthedifferenttypesofaminoacidspresentinthecolumn.ForcompleteconservationofaminoacidsataparticularcolumnintheMSA(i.e.,n=N),thescore,v=0,indicatingnovariability;whereas,fornoconservationortotaldiversity,thescoreisv=1.Since,vvariesbetween0and1,anormalizedscoreisobtained,whichisusefulforcomparisonofdifferentMSAs.BecauseofthegenericnatureofscoringinVAMA,whichisnotbasedonanystereochemicalpropertyoftheaminoacids,vcanbeusedtocalculatetherelativefrequenciesofaminoacidsforanygivenclassification.Here,alongwiththebasicscoringmethodologyadoptedbycommonlyusedMSAprogrammeCLUSTAL17,severaloptionsareprovidedforfunction-specificclassificationsasmentionedearlier.Thus,VAMAprovidestheuserwithflexibilitytoquantifyvariabilityusingthesedifferentclassificationsasrequired.II.FEATURESOFVAMAFig.1showstheVAMAinterface.TherearethreewaysinwhichvariabilityanalysisisdoneinVAMA:Basic,GroupBasedandReferenceSequenceBased.TheinputforVAMAcanbemultiplealignmentfilesinCLUSTALandFASTA978-1-4244-4713-8/10/$25.002010IEEEFigure1.VAMAinterface.formats.ThesefilescanbepastedontotheVAMAworkwindow,ormaybeuploadedusingthe“Browse”button.VAMAalsoaddressesthecommonproblemofexistenceof“gaps”inthealignment.TheusercandefineaGapcutoffforincludingresiduepositionshavinggapsinthealignment.Forcolumns,havingmoregapsthanGapcutoff,variabilityisnotcalculatedandablankspaceisdisplayedintheoutput.ForcolumnshavinggapslessthanorequaltothedefinedGapcutoff,thevalueofNisadjustedbysubtractingfromN,thenumberofgapsatthatposition.Thesepositionsareindicatedbya#intheoutput.VAMAcalculatesthevariabilityscoreforeachcolumninthealignmentbasedontheconservationgroupschosenbytheuser,andtheoutputfileconsistsofthefollowingparts-(i)thevariabilityscoreateachalignedposition;(ii)statisticsofthevariabilitydatadisplayingthemean,standarddeviationandrangeforthesame;and(iii)theplotofvariabilityvaluesversusalignmentpositions.ThedatacanbesavedbothintextandEXCELformatforfurtheranalysis.ThevariabilityanalysisinVAMAcanbedoneinthefollowingthreewaysA.BasicVariabilityAnalysisHereallaminoacidsareconsideredtobeinseparateclasses.Hence,itdoesnottakeintoaccountanysubstitutions,andanynon-identitycontributestothevariability.B.GroupBasedVariabilityAnalysisConservativesubstitutionscanbeaccountedforbyclassifyingaminoacidsaccordingtotheirphysicochemicalpropertiesandpositionalattributes.Variabilityisassigned0foraparticularpositioniftheaminoacidsbelongtoagroupinthespecificclassification.VAMAprovidesthefollowinggroupbasedanalysisoptions:i.DefaultClassification:ThisclassificationissameastheoneusedinCLUSTAL17.AminoacidsareclassifiedintostrongandweakgroupsbasedonthephysicochemicalpropertiesandtheGonnetPam250matrix18.ii.MS,GC,andWClassifications:Severaldifferentclassificationsareproposeddependinguponthefunctionalconstraintsapplicable.MSclassificationisapplicabletoproteinstructurecores6,Wclassificationisapplicabletotransporterproteins8,andGCclassificationisapplicabletotheinterfaceaminoacids4.TheclassificationsaredescribedintheUserGuide.iii.UserDefinedClassification:Variousotherclassificationschemeshavebeenproposed7.VAMAoffersuserstheoptiontouseanyortheirownclassification.C.ReferenceSequenceBasedVariabilityAnalysisReferencesequenceisthesequencewithrespecttowhichtheresiduesarenumbered.Herex=0inthevariabilityplotcorrespondstofirstresidueofthereferencesequence.Thisisusefulwhenthe3-dimensionalstructureofthereferencesequenceisavailabletohelpanalyzetheresultsforposition-specificchangesinotheraminoacidsequencesinthealignment.Thecalculationisfirstdonebasedupondifferentclassifications,andthentheresiduesarenumberedaccordingtotheReferenceSequencegivenbytheuser.BythismethodtheusercanaccessthealignmentagainsttheReferenceSequence.AnExampleofanalysis,usingVAMA,isshowninFig.2.Asetof25aminoacidsequencesrepresentingtheRosmannfold19wereextractedfromProteinDataBank20.CLUSTAL-alignedsequenceswerepastedasinputtoVAMA.WeusedMSclassificationtocalculatethevariability,andcompareditwiththeDefault(CLUSTAL)classification.Fig.2AisthevariabilityplotforMSandDefaultclassifications,showinglowerscoreforMSclassificationthanthatoftheDefaultclassification.InFig.2A,Gapcutoffof0isusedtocalculatethescores.Thus,forpositionswith1ormoregaps,variabilityisnotcalculated.Rosmannfoldbeinganexampleofproteinstructurecore,theresultswithMSaremorereliable.Fig.2BalsoshowsthattheMSclassificationgivestheloweststatisticswhencomparedtoothers.Hereweshowonlythefirstsubsetofpositions(92-100)forwhichthevariabilityscoreswerecalculated.Clearly,theminimumvariabilityscoregivenbyMSclassificationadvocatestheapplicabilityofthistool.Importantly,incaseofaproteinlackingwell-definedfunction,VAMAallowscalculationofthevariabilityscoreusingthegivenclassificationstoidentifyfunctionallyandstructurallyimportantresiduesbasedontheircomparativescore.Thisfeature,whereseveraldifferentclassificationscanbeusedtocalculatethevariabilityinMSA,isuniquetoVAMA.Figure2.AnalysisofVAMAoutputfor25aminoacidsequencesoftheRossmanFold.(A)VariabilityplotcomparingMSandDefaultclassificationscores,(B)Variabilityvaluesofresidues92to100,usingdifferentclassifications,alongwithmeanandstandarddeviation(SD).VAMAincludesseveralusefulfeaturesfortheuser.The“UserGuide”explainsallfeaturesclearlywithexample.The“RelatedLinks”provideslinkstootherMSAtools(e.g.CLUSTALW,T-Coffee,CINEMA,etc.),andusefulwebsitessuchas,NCBI,PDB,Swiss-Prot,andKEGG.A“Search”buttonallowssearchwithinVAMAandtheWorldWideWeb.III.DISCUSSIONVAMAisasimple,user-friendly,yetversatile,toolforcalculatingthevariabilityinmultiplyalignedproteinsequences.VAMAsupportsbothbasicandgroupbasedanalysis,byconsideringthephysicochemicalpropertiesofaminoacids,aswellastheirdifferentialusagefordifferenttopologicaldeterminantsintheprotein.Itquantifiesvariabilityinthesequencesbasedonaminoacidclassificationgroupsdependingontheabovefactors.Gap-cutofffeatureactsasanadditionaltooltoscorethesequences.Statisticalanalysisperformedonthevariabilitydata,likemean,standarddeviationandrange,canalsobehelpfulinfurtheranalysis.VAMAis,thus,ausefulfunction-specificvariabilityanalysistoolthatallowsacomparativeanalysisafeaturelackinginothersimilartools.ACKNOWLEDGMENTSSthanksDepartmentofBiotechnology,Indiaforfinancialsupport.AGthankstheIndianAcademyofSciencesforasummerfellowshiptoworkattheCCMB.APthankstheCouncilofScientificandIndustrialResearch(CSIR)forfellowship.REFERENCES1T.F.Smith,andM.S.Waterman,“IdentificationofCommonMolecularSubsequences.”J.Mol.Biol.,vol.147,pp.195-197,1981.2D.J.Lipman,S.F.Altschul,andJ.D.Kececioglu,“Atoolformultiplesequencealignment.”Proc.Natl.Acad.Sci.USA,vol.86,pp.4412-4415,1989.3T.J.Magliery,andL.Regan,“Sequencevariationinligandbindingsitesinproteins.”BMCBioinformatics,vol.6,p.240,2005.4M.Guharoy,andP.Chakrabarti,“Conservationandrelativeimportanceofresiduesacrossprotein-proteininterfaces.”Proc.Natl.Acad.Sci.USA,vol.102,pp.15447-15452,2005.5O.Schueler-Furman,andD.Baker,“Conservedresidueclusteringandproteinstructureprediction.”Proteins:StructureFunctionandBioinformatics,vol.52,pp.225-235,2003.6L.A.Mirny,andE.I.Shakhnovich,“Evolutionaryconservationofthefoldingnucleus.”J.Mol.Biol.,vol.308,pp.123-129,2001.7W.R.Taylor,“Theclassificationofaminoacidconservation.”J.Theor.Biol.,vol.119,pp.205-218,1986.8R.M.Williamson,“Informationtheoryanalysisoftherelationshipbetweenprimarysequencestructureandligandrecognitionamongaclassoffacilitatedtransporters.”J.Theor.Biol.,vol.174,pp.179-188,1995.9W.S.J.Valdar,“Scoringresidueconservation.”Proteins:Structure,FunctionandBioinformatics,vol.48,pp.227-241,2002.10J.A.Capra,andM.Singh,“Predictingfunctionallyimportantresiduesfromsequenceconservation.”Bioinformatics,vol.23,pp.1875-1882,2007.11M.Clamp,J.Cuff,S.M.Searle,andG.J.Barton,“TheJalviewJavaAlig
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農業技術推廣服務責任協議
- 網絡工程網絡通信理論測試
- 深度學習 課件 第0章-課程簡介
- 工程項目管理文獻回顧試題及答案
- 投資項目的資金流動分析試題及答案
- 人工智能技術在教育領域的應用合作協議
- 智慧供應鏈管理 課件 第五章 智慧物流管理
- 2024年固廢污染治理項目投資申請報告代可行性研究報告
- 房產小區測試題及答案
- 著眼未來水利水電工程考試試題及答案
- 輪胎式裝載機檢測報告(共5頁)
- 電子設備裝接工(高級)理論知識考核試卷一(共11頁)
- 畢業設計(論文)玉米育苗制缽機設計(含全套cad圖紙)
- 康復評定——感覺功能評定
- 彎矩二次分配法excel表-(1)
- 粉煤灰漂珠粉項目可行性研究報告寫作范文
- 華為產品測試策略及驗證計劃模板
- MPOR涂層測厚儀說明書
- 焊接工藝規程(WPS)
- 醫院管理試題學習資料
- 1FC6發電機常見故障的判斷及處理方法
評論
0/150
提交評論