




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省畢節地區黔西縣2025屆高考數學全真模擬密押卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于圓周率,數學發展史上出現過許多很有創意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發,某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區間上的均勻隨機數,再統計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統計數來估計的值.若,則的估計值為()A. B. C. D.2.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.3.已知,且,則()A. B. C. D.4.已知,,,若,則()A. B. C. D.5.定義域為R的偶函數滿足任意,有,且當時,.若函數至少有三個零點,則的取值范圍是()A. B. C. D.6.已知復數滿足,則=()A. B.C. D.7.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.8.等比數列若則()A.±6 B.6 C.-6 D.9.的展開式中的系數為()A.5 B.10 C.20 D.3010.設函數(,)是上的奇函數,若的圖象關于直線對稱,且在區間上是單調函數,則()A. B. C. D.11.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立12.已知某幾何體的三視圖如圖所示,其中正視圖與側視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.14.已知實數滿足則點構成的區域的面積為____,的最大值為_________15.內角,,的對邊分別為,,,若,則__________.16.已知三棱錐的四個頂點在球的球面上,,是邊長為2的正三角形,,則球的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在等比數列中,.(1)求數列的通項公式;(2)若,求數列前項的和.18.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.19.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數,且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數a的取值范圍;(3)在(2)的條件下,是否存在實數a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數a的值;若不存在,請說明理由.20.(12分)已知函數(,),.(Ⅰ)討論的單調性;(Ⅱ)若對任意的,恒成立,求實數的取值范圍.21.(12分)在直角坐標系中,曲線的參數方程為(為參數).點在曲線上,點滿足.(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求動點的軌跡的極坐標方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.22.(10分)在平面直角坐標系中,以原點為極點,x軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線C的極坐標方程為ρ=2cosθ,直線l的參數方程為(t為參數,α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標方程;(2)若直線l與曲線C有唯一的公共點,求角α的大?。?/p>
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.2.C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數原理可得出結果.【詳解】兩組至少都是人,則分組中兩組的人數分別為、或、,
又因為名女干部不能單獨成一組,則不同的派遣方案種數為.故選:C.本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.3.B【解析】分析:首先利用同角三角函數關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉化為關于的式子,代入從而求得結果.詳解:根據題中的條件,可得為銳角,根據,可求得,而,故選B.點睛:該題考查的是有關同角三角函數關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數關系式求解,也可以結合三角函數的定義式求解.4.B【解析】
由平行求出參數,再由數量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.本題考查向量平行的坐標表示,考查數量積的坐標運算,掌握向量數量積的坐標運算是解題關鍵.5.B【解析】
由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數形結合,根據,求得的取值范圍.【詳解】是定義域為R的偶函數,滿足任意,,令,又,為周期為的偶函數,當時,,當,當,作出圖像,如下圖所示:函數至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.本題考查函數周期性及其應用,解題過程中用到了數形結合方法,這也是高考??嫉臒狳c問題,屬于中檔題.6.B【解析】
利用復數的代數運算法則化簡即可得到結論.【詳解】由,得,所以,.故選:B.本題考查復數代數形式的乘除運算,考查復數的基本概念,屬于基礎題.7.A【解析】
設橢圓的半長軸長為,雙曲線的半長軸長為,根據橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.8.B【解析】
根據等比中項性質代入可得解,由等比數列項的性質確定值即可.【詳解】由等比數列中等比中項性質可知,,所以,而由等比數列性質可知奇數項符號相同,所以,故選:B.本題考查了等比數列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.9.C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數為.故選:C.本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎題.10.D【解析】
根據函數為上的奇函數可得,由函數的對稱軸及單調性即可確定的值,進而確定函數的解析式,即可求得的值.【詳解】函數(,)是上的奇函數,則,所以.又的圖象關于直線對稱可得,,即,,由函數的單調區間知,,即,綜上,則,.故選:D本題考查了三角函數的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數,屬于中檔題.11.C【解析】
A:否命題既否條件又否結論,故A錯.B:由正弦定理和邊角關系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據冪函數的性質判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數在遞減,故D錯.故選:C考查判斷命題的真假,是基礎題.12.D【解析】
根據三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:本題主要考查圓錐體的體積,是基礎題.14.811【解析】
畫出不等式組表示的平面區域,數形結合求得區域面積以及目標函數的最值.【詳解】不等式組表示的平面區域如下圖所示:數形結合可知,可行域為三角形,且底邊長,高為,故區域面積;令,變為,顯然直線過時,z最大,故.故答案為:;11.本題考查簡單線性規劃問題,涉及區域面積的求解,屬基礎題.15.【解析】∵,∴,即,∴,∴.16.【解析】
由題意可得三棱錐的三條側棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:此題考查球的體積,幾何體的外接球,考查空間想象能力,計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由基本量法,求出公比后可得通項公式;(2)求出,用裂項相消法求和.【詳解】解:(1)設等比數列的公比為又因為,所以解得(舍)或所以,即(2)據(1)求解知,,所以所以本題考查求等比數列的通項公式,考查裂項相消法求和.解題方法是基本量法.基本量法是解決等差數列和等比數列的基本方法,務必掌握.18.(1);(2)【解析】
(1)根據正弦定理化簡得到,故,得到答案.(2)計算,再利用面積公式計算得到答案.【詳解】(1),則,即,故,,故.(2),故,故.當時等號成立.,故,,故△ABC面積的最大值為.本題考查了正弦定理,面積公式,均值不等式,意在考查學生的綜合應用能力.19.(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】
(2)設圓心為M(m,0),根據相切得到,計算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點M(2,0),計算得到答案.【詳解】(2)設圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因為m為整數,故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+5=0,即y=ax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直線ax﹣y+5=0交圓于A,B兩點,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以實數a的取值范圍是().(3)設符合條件的實數a存在,則直線l的斜率為,l的方程為,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圓心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在實數使得過點P(﹣2,4)的直線l垂直平分弦AB.本題考查了直線和圓的位置關系,意在考查學生的計算能力和轉化能力.20.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)求導得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設,求,令,故在單調遞增,存在使得,,計算得到答案.【詳解】(Ⅰ)(),當時,在單調遞減,在單調遞增;當時,在單調遞增,在單調遞減.(Ⅱ)(),即,().令(),則,令,,故在單調遞增,注意到,,于是存在使得,可知在單調遞增,在單調遞減.∴.綜上知,.本題考查了函數的單調性,恒成立問題,意在考查學生對于導數知識的綜合應用能力.21.(1)();(2)【解析】
(1)由已知,曲線的參數方程消去t后,要注意x的范圍,再利用普通方程與極坐標方程的互化公式運算即可;(2)設,,由(1)可得,,相加即可得到證明.【詳解】(1),∵,∴,∴,由題可知:,:().(2)因為,設,,則,,.本題考查參數方程、普通方程、極坐標方程間的互化,考查學生的計算能力,是一道容易題.22.(1)當時,直線l方程為x=-1;當時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)對直線l的傾斜角分類討論,消去參數即可求出其普通方程;由,即可求出曲線C的直角坐標方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030大理石行業市場深度調研及發展趨勢與投資報告
- 2025至2030船舶機電設備行業市場深度研究及發展前景投資可行性分析報告
- 攀枝花市市直機關遴選公務員考試真題2024
- 關鍵期中考試數學試卷
- 高二金牌考卷數學試卷
- 高考卷理科數學試卷
- 廣東高職期中考數學試卷
- 安全生產培訓成本效益與企業管理水平關系研究考核試卷
- 光學計量在光學系統光束整形技術中的應用探討考核試卷
- 醫療器械臨床數據統計分析的交叉驗證技術考核試卷
- 旅游大數據與智慧旅游教學大綱
- 金屬廢棄物生物冶金提取與利用
- 廣西燃氣安全檢查標準 DBJ T45-1472-2023(2023年7月1日實施)
- 湖南省長沙2024年七年級下冊生物期末試卷附答案
- 2023-2024學年第二學期期末學業質量檢測八年級語文試卷
- 統編版(2024)一年級語文上冊拼音1《a o e》精美課件
- 農村房子繼承人放棄繼承協議書
- WS 329-2024 麻醉記錄單標準
- 2024-2029全球及中國福利管理系統行業市場發展分析及前景趨勢與投資發展研究報告
- 新標準英語小學五年級下各模塊習題
- 開票稅點自動計算器
評論
0/150
提交評論