




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
有關余數(shù)的題目及答案1.題目:計算\(1234\times5678\)除以7的余數(shù)。答案:首先計算\(1234\times5678\)的結果,然后除以7求余數(shù)。由于直接計算這個乘積非常大,我們可以采用模運算的方法簡化計算。首先計算\(1234\mod7\)和\(5678\mod7\),然后計算這兩個結果的乘積,最后再對7取余數(shù)。\(1234\mod7=6\)(因為\(1234=176\times7+6\))\(5678\mod7=6\)(因為\(5678=811\times7+6\))接下來計算\(6\times6=36\),然后\(36\mod7=1\)(因為\(36=5\times7+1\))所以,\(1234\times5678\)除以7的余數(shù)是1。2.題目:求\(100^{100}\)除以3的余數(shù)。答案:根據(jù)費馬小定理,如果\(p\)是一個質數(shù),且\(a\)是不被\(p\)整除的整數(shù),則\(a^{p-1}\equiv1\modp\)。這里\(p=3\),\(a=100\),所以\(100^2\equiv1\mod3\)。因為\(100\equiv1\mod3\)(因為\(100=33\times3+1\)),所以\(100^{100}\equiv1^{50}\equiv1\mod3\)。所以,\(100^{100}\)除以3的余數(shù)是1。3.題目:計算\(2^{2019}\)除以7的余數(shù)。答案:我們可以使用歐拉定理,該定理指出如果\(a\)和\(n\)互質,則\(a^{\phi(n)}\equiv1\modn\),其中\(zhòng)(\phi(n)\)是歐拉函數(shù)。對于\(n=7\),\(\phi(7)=6\),因為7是質數(shù)。所以,\(2^6\equiv1\mod7\)。我們可以將\(2^{2019}\)寫成\(2^{6\times336+3}\)的形式,即\((2^6)^{336}\times2^3\)。由于\((2^6)^{336}\equiv1^{336}\equiv1\mod7\),我們只需要計算\(2^3\mod7\)。\(2^3=8\),\(8\mod7=1\)。所以,\(2^{2019}\)除以7的余數(shù)是1。4.題目:求\(3^{2023}\)除以5的余數(shù)。答案:同樣使用歐拉定理,對于\(n=5\),\(\phi(5)=4\)。所以,\(3^4\equiv1\mod5\)。我們可以將\(3^{2023}\)寫成\(3^{4\times505+3}\)的形式,即\((3^4)^{505}\times3^3\)。由于\((3^4)^{505}\equiv1^{505}\equiv1\mod5\),我們只需要計算\(3^3\mod5\)。\(3^3=27\),\(27\mod5=2\)。所以,\(3^{2023}\)除以5的余數(shù)是2。5.題目:計算\(77^{78}\)除以11的余數(shù)。答案:使用費馬小定理,因為11是質數(shù),所以\(77^{10}\equiv1\mod11\)。我們可以將\(77^{78}\)寫成\(77^{10\times7+8}\)的形式,即\((77^{10})^7\times77^8\)。由于\((77^{10})^7\equiv1^7\equiv1\mod11\),我們只需要計算\(77^8\mod11\)。\(77\equiv0\mod11\)(因為\(77=7\times11\)),所以\(77^8\equiv0^8\equiv0\mod11\)。所以,\(77^{78}\)除以11的余數(shù)是0。6.題目:求\(98^{99}\)除以13的余數(shù)。答案:使用歐拉定理,對于\(n=13\),\(\phi(13)=12\)。所以,\(98^{12}\equiv1\mod13\)。我們可以將\(98^{99}\)寫成\(98^{12\times8+3}\)的形式,即\((98^{12})^8\times98^3\)。由于\((98^{12})^8\equiv1^8\equiv1\mod13\),我們只需要計算\(98^3\mod13\)。\(98\equiv12\mod13\)(因為\(98=7\times13+12\)),所以\(98^3\equiv12^3\mod13\)。\(12^3=1728\),\(1728\mod13=12\)(因為\(1728=133\times13+12\))。所以,\(98^{99}\)除以13的余數(shù)是12。7.題目:計算\(2023^{2024}\)除以17的余數(shù)。答案:使用歐拉定理,對于\(n=17\),\(\phi(17)=16\)。所以,\(2023^{16}\equiv1\mod17\)。我們可以將\(2023^{2024}\)寫成\(2023^{16\times126+8}\)的形式,即\((2023^{16})^{126}\times2023^8\)。由于\((2023^{16})^{126}\equiv1^{126}\equiv1\mod17\),我們只需要計算\(2023^8\mod17\)。\(2023\equiv15\mod17\)(因為\(2023=118\times17+15\)),所以\(2023^8\equiv15^8\mod17\)。\(15^2=225\),\(225\mod17=4\)(因為\(225=13\times17+4\))。\(15^4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小班節(jié)能活動周活動方案
- 巧用數(shù)字活動方案
- 工匠精神培育活動方案
- 展示匯報活動方案
- 少工委活動比賽活動方案
- 小學詩詞書法活動方案
- 少兒口才活動方案
- 小額貸款公司策劃方案
- 布置生日自營活動方案
- 市集線下活動方案
- 制冷操作證培訓教材制冷與空調設備運行操作作業(yè)培訓教程課件
- 湖南省長沙市望城區(qū)2020-2021學年八年級下學期期末考試歷史試卷
- 煙葉烘烤調制理論考試試題
- 下承式鋼桁梁橋結構設計及優(yōu)化 (跨度64m)
- DB23-T 3336-2022懸掛式單軌交通技術標準-(高清最新)
- 服刑人員心理健康教育課件
- DB32-T 2665-2014機動車維修費用結算規(guī)范-(高清現(xiàn)行)
- “麥語言”函數(shù)手冊
- 外協(xié)(外委)單位作業(yè)安全管理制度(附安全告知書)
- 【專項訓練】初二數(shù)學-全等三角形的綜合應用
- (完整版)《市場營銷學》說課課件
評論
0/150
提交評論