廊坊師范學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
廊坊師范學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
廊坊師范學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
廊坊師范學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
廊坊師范學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁廊坊師范學(xué)院

《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)分析時,如果需要對數(shù)據(jù)進(jìn)行缺失值處理,同時考慮數(shù)據(jù)的分布特征,以下哪種方法較為合適?()A.隨機(jī)森林插補B.基于聚類的插補C.基于回歸的插補D.以上都不是2、假設(shè)我們正在分析客戶的購買行為數(shù)據(jù),想要了解客戶購買某一產(chǎn)品的頻率分布。以下哪種統(tǒng)計量最適合描述這種數(shù)據(jù)?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差3、數(shù)據(jù)分析中的數(shù)據(jù)可視化有助于直觀理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)的銷售額分布情況,以下關(guān)于數(shù)據(jù)可視化選擇的描述,正確的是:()A.使用餅圖,因為它能清晰展示各地區(qū)銷售額占比B.采用折線圖,以反映銷售額隨地區(qū)的變化趨勢C.運用柱狀圖,直觀比較不同地區(qū)銷售額的差異D.選擇箱線圖,全面展示銷售額的分布特征,包括四分位數(shù)和異常值4、在進(jìn)行數(shù)據(jù)分析時,特征工程對于模型的性能有著重要影響。假設(shè)你正在處理一個預(yù)測房價的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項是最需要謹(jǐn)慎處理的?()A.對數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來不重要的特征,以簡化模型5、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的評估指標(biāo)有很多,其中準(zhǔn)確性是一個重要的指標(biāo)。以下關(guān)于準(zhǔn)確性的描述中,錯誤的是?()A.準(zhǔn)確性是指數(shù)據(jù)與實際情況的符合程度B.準(zhǔn)確性可以通過計算數(shù)據(jù)的誤差率來衡量C.提高數(shù)據(jù)的準(zhǔn)確性可以通過數(shù)據(jù)清洗和驗證等方法來實現(xiàn)D.數(shù)據(jù)的準(zhǔn)確性只與數(shù)據(jù)的來源有關(guān),與數(shù)據(jù)分析的方法和工具無關(guān)6、在時間序列數(shù)據(jù)分析中,除了預(yù)測未來值,還可以進(jìn)行季節(jié)性分析。假設(shè)我們有一個銷售數(shù)據(jù)的時間序列,顯示出明顯的季節(jié)性特征,以下哪種方法可以用于提取和分析季節(jié)性成分?()A.季節(jié)指數(shù)法B.移動平均季節(jié)分解法C.加法模型D.以上都是7、對于數(shù)據(jù)預(yù)處理中的缺失值處理,以下方法中,可能會引入偏差的是:()A.用均值填充B.用中位數(shù)填充C.用眾數(shù)填充D.直接刪除包含缺失值的記錄8、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而不僅僅是相關(guān)性。假設(shè)我們想要研究某種藥物是否真正導(dǎo)致了病情的改善,以下哪種方法或設(shè)計可以幫助我們進(jìn)行因果推斷?()A.隨機(jī)對照試驗B.觀察性研究中的工具變量法C.斷點回歸設(shè)計D.以上都是9、在數(shù)據(jù)分析中,數(shù)據(jù)分析的流程包括多個步驟,其中問題定義是第一個步驟。以下關(guān)于問題定義的描述中,錯誤的是?()A.問題定義應(yīng)該明確數(shù)據(jù)分析的目的和需求B.問題定義應(yīng)該考慮數(shù)據(jù)的可用性和可獲取性C.問題定義應(yīng)該確定數(shù)據(jù)分析的方法和工具D.問題定義可以根據(jù)需要進(jìn)行調(diào)整和修改,以適應(yīng)不同的情況10、數(shù)據(jù)分析在電商領(lǐng)域有著廣泛的應(yīng)用。以下關(guān)于數(shù)據(jù)分析在電商客戶關(guān)系管理中的作用,不準(zhǔn)確的是()A.可以對客戶進(jìn)行細(xì)分,根據(jù)客戶的購買行為和偏好提供個性化的推薦和服務(wù)B.通過分析客戶的反饋和評價,改進(jìn)產(chǎn)品和服務(wù)質(zhì)量,提高客戶滿意度C.預(yù)測客戶的流失風(fēng)險,采取相應(yīng)的措施進(jìn)行客戶保留和挽回D.數(shù)據(jù)分析在電商客戶關(guān)系管理中作用不大,傳統(tǒng)的客戶關(guān)系管理方法更加有效11、在數(shù)據(jù)庫中,索引可以提高數(shù)據(jù)的查詢效率。以下哪種情況下不適合創(chuàng)建索引?()A.表中數(shù)據(jù)量較小B.經(jīng)常作為查詢條件的字段C.唯一性較差的字段D.頻繁更新的字段12、數(shù)據(jù)分析中的數(shù)據(jù)融合是將多個數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合方法的描述,正確的是:()A.簡單地將數(shù)據(jù)拼接在一起,不處理數(shù)據(jù)格式和語義的差異B.不進(jìn)行數(shù)據(jù)的清洗和轉(zhuǎn)換,直接使用原始數(shù)據(jù)進(jìn)行融合C.運用數(shù)據(jù)清洗、轉(zhuǎn)換和匹配技術(shù),解決數(shù)據(jù)格式、單位和語義的不一致,確保融合后數(shù)據(jù)的準(zhǔn)確性和可用性D.認(rèn)為數(shù)據(jù)融合不會引入誤差和沖突,不進(jìn)行質(zhì)量檢查13、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們面對一個包含大量缺失值、錯誤數(shù)據(jù)和重復(fù)記錄的數(shù)據(jù)集,以下關(guān)于數(shù)據(jù)清洗的描述,哪一項是不準(zhǔn)確的?()A.可以通過刪除包含過多缺失值的行或列來處理缺失數(shù)據(jù),但這可能導(dǎo)致信息丟失B.對于錯誤數(shù)據(jù),可以通過與其他可靠數(shù)據(jù)源進(jìn)行對比或基于數(shù)據(jù)的邏輯關(guān)系進(jìn)行修正C.重復(fù)記錄可以直接保留,因為它們不會對數(shù)據(jù)分析結(jié)果產(chǎn)生太大影響D.運用數(shù)據(jù)填充技術(shù),如使用均值、中位數(shù)或眾數(shù)來填充缺失值,但需要謹(jǐn)慎選擇填充方法14、在對一個社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進(jìn)行分析,例如好友關(guān)系、群組活動等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是15、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的建設(shè)需要考慮多個因素,其中數(shù)據(jù)模型是一個重要的因素。以下關(guān)于數(shù)據(jù)模型的描述中,錯誤的是?()A.數(shù)據(jù)模型是對數(shù)據(jù)的組織和存儲方式的抽象描述B.數(shù)據(jù)模型可以分為概念模型、邏輯模型和物理模型三個層次C.數(shù)據(jù)模型的設(shè)計應(yīng)該考慮數(shù)據(jù)的完整性、一致性和可擴(kuò)展性D.數(shù)據(jù)模型的選擇只取決于數(shù)據(jù)的類型和規(guī)模,與數(shù)據(jù)分析的需求無關(guān)16、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是非常重要的一步。以下關(guān)于數(shù)據(jù)清洗的描述,錯誤的是:()A.數(shù)據(jù)清洗旨在處理缺失值、異常值和重復(fù)值等問題B.可以通過刪除包含缺失值的整行數(shù)據(jù)來進(jìn)行處理C.對于異常值,應(yīng)一律刪除以保證數(shù)據(jù)的準(zhǔn)確性D.重復(fù)值的處理需要根據(jù)具體情況決定保留或刪除17、關(guān)于數(shù)據(jù)分析中的回歸分析,假設(shè)要研究員工的工作年限與工資收入之間的關(guān)系。數(shù)據(jù)存在一定的噪聲和非線性特征。以下哪種回歸模型可能更適合捕捉這種復(fù)雜的關(guān)系?()A.線性回歸,假設(shè)關(guān)系是線性的B.多項式回歸,考慮非線性關(guān)系C.邏輯回歸,處理二分類問題D.不進(jìn)行回歸分析,僅通過描述性統(tǒng)計觀察18、數(shù)據(jù)分析在金融領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一家銀行要評估客戶的信用風(fēng)險。以下關(guān)于數(shù)據(jù)分析在金融中的描述,哪一項是不正確的?()A.可以建立信用評分模型,預(yù)測客戶違約的可能性B.分析市場趨勢,制定投資策略C.數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用完全沒有風(fēng)險,不會導(dǎo)致錯誤的決策D.監(jiān)測金融交易,防范欺詐行為19、在進(jìn)行數(shù)據(jù)分析時,異常值的檢測和處理是重要的環(huán)節(jié)。假設(shè)我們在分析一組生產(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù)。以下關(guān)于異常值的描述,哪一項是不準(zhǔn)確的?()A.異常值可能是由于數(shù)據(jù)錄入錯誤或特殊情況導(dǎo)致的B.可以通過箱線圖等方法直觀地檢測異常值C.對于異常值,應(yīng)該立即刪除,以免影響分析結(jié)果D.對異常值的處理需要根據(jù)具體情況進(jìn)行判斷,有時需要進(jìn)一步調(diào)查原因20、在數(shù)據(jù)可視化中,選擇合適的圖表類型對于清晰傳達(dá)信息至關(guān)重要。假設(shè)要展示不同地區(qū)在過去十年間的人口增長趨勢,以下哪種圖表可能是最合適的?()A.餅圖B.雷達(dá)圖C.折線圖D.氣泡圖21、在數(shù)據(jù)分析中,選擇合適的統(tǒng)計量來描述數(shù)據(jù)的集中趨勢和離散程度是很重要的。假設(shè)你有一組員工的工資數(shù)據(jù),以下關(guān)于統(tǒng)計量的選擇,哪一項是最合適的?()A.用中位數(shù)描述集中趨勢,用方差描述離散程度B.用均值描述集中趨勢,用標(biāo)準(zhǔn)差描述離散程度C.用眾數(shù)描述集中趨勢,用極差描述離散程度D.隨機(jī)選擇統(tǒng)計量,不考慮數(shù)據(jù)的特點22、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個PB級別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲數(shù)據(jù),能夠擴(kuò)展到大規(guī)模的集群B.MapReduce編程模型可以實現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無能為力D.實時處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架23、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測缺失值D.以上方法均可24、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是25、在數(shù)據(jù)分析中,探索性數(shù)據(jù)分析(EDA)可以幫助我們初步了解數(shù)據(jù)的特征。假設(shè)你剛剛獲得一個新的數(shù)據(jù)集,以下關(guān)于EDA的步驟,哪一項是最應(yīng)該首先進(jìn)行的?()A.繪制數(shù)據(jù)的直方圖和箱線圖B.計算數(shù)據(jù)的基本統(tǒng)計量,如均值、中位數(shù)等C.檢查數(shù)據(jù)的缺失值和異常值D.對數(shù)據(jù)進(jìn)行聚類分析二、簡答題(本大題共4個小題,共20分)1、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行模型的選擇和比較,包括不同模型的性能評估指標(biāo)和可視化方法,并舉例分析。2、(本題5分)在進(jìn)行分類模型訓(xùn)練時,如何進(jìn)行超參數(shù)調(diào)優(yōu)?請介紹常見的超參數(shù)調(diào)優(yōu)方法,如網(wǎng)格搜索、隨機(jī)搜索等,并舉例說明。3、(本題5分)說明在數(shù)據(jù)分析中如何評估聚類結(jié)果的質(zhì)量?請闡述常用的評估指標(biāo)和方法,并舉例說明在不同聚類算法中的應(yīng)用。4、(本題5分)解釋什么是強化學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用,說明其與監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)的區(qū)別,并舉例分析。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)一家零食店擁有銷售數(shù)據(jù)、顧客口味偏好、新品推廣效果等。研發(fā)新的零食產(chǎn)品,提高店鋪競爭力。2、(本題5分)某手機(jī)應(yīng)用市場積累了應(yīng)用的更新頻率、用戶評分變化、下載來源等。探討怎樣利用這些數(shù)據(jù)評估應(yīng)用開發(fā)者的表現(xiàn)和應(yīng)用的市場競爭力。3、(本題5分)某旅游景區(qū)積累了游客的來源地、游玩時間、消費項目等數(shù)據(jù)。思考如何通過這些數(shù)據(jù)優(yōu)化景區(qū)的設(shè)施布局和服務(wù)項目。4、(本題5分)某在線肚皮舞教學(xué)平臺保存了學(xué)員舞蹈表現(xiàn)數(shù)據(jù)、音樂選擇偏好、服裝需求等。優(yōu)化肚皮舞教學(xué)的配套服務(wù)。5、(本題5分)一家童裝店擁有銷售數(shù)據(jù)、兒童身高體重分布、款式流行趨勢等。采購適合不同年齡段兒童的時尚童裝。四、論述題(本大題共3個小題,共30分)1、(本題10分)在體育賽事的組織和運營中,如何利用數(shù)據(jù)分析來安排賽程、評估運動員表現(xiàn)和預(yù)測比賽

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論