




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年內蒙古自治區包頭市重點名校中考數學最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉180°,得到△BP2C;把△BP2C繞點C順時針旋轉180°,得到△CP3D,依此類推,則旋轉第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)2.如圖,在半徑為5的⊙O中,弦AB=6,點C是優弧上一點(不與A,B重合),則cosC的值為()A. B. C. D.3.某春季田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:成績人數這些運動員跳高成績的中位數是()A. B. C. D.4.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.125.若點A(1,a)和點B(4,b)在直線y=-2x+m上,則a與b的大小關系是()A.a>b B.a<bC.a=b D.與m的值有關6.如圖,已知反比函數的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為()A. B.1 C.2 D.47.五名女生的體重(單位:kg)分別為:37、40、38、42、42,這組數據的眾數和中位數分別是()A.2、40B.42、38C.40、42D.42、408.下列因式分解正確的是()A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)9.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.1210.根據總書記在“一帶一路”國際合作高峰論壇開幕式上的演講,中國將在未來3年向參與“一帶一路”建設的發展中國家和國際組織提供60000000000元人民幣援助,建設更多民生項目,其中數據60000000000用科學記數法表示為()A.0.6×1010 B.0.6×1011 C.6×1010 D.6×1011二、填空題(共7小題,每小題3分,滿分21分)11.在線段AB上,點C把線段AB分成兩條線段AC和BC,如果,那么點C叫做線段AB的黃金分割點.若點P是線段MN的黃金分割點,當MN=1時,PM的長是_____.12.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.13.拋物線y=(x+1)2-2的頂點坐標是______.14.已知二次函數y=x2,當x>0時,y隨x的增大而_____(填“增大”或“減小”).15.一個圓錐的母線長15CM.高為9CM.則側面展開圖的圓心角________。16.一元二次方程x2﹣4=0的解是._________17.二次函數的圖象與x軸有____個交點
.三、解答題(共7小題,滿分69分)18.(10分)(2016山東省煙臺市)某中學廣場上有旗桿如圖1所示,在學習解直角三角形以后,數學興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結果精確到0.1米).(參考數據:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)19.(5分)如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經過點A(3,-1),與y軸交于點B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經過點A的直線交拋物線于點P,交x軸于點Q,若S△OPA=2S△OQA,試求出點P的坐標.20.(8分)某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經過市場調查,發現這種商品單價每降低1元,其銷量可增加10件.(1)求商場經營該商品原來一天可獲利潤多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.①若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?②求出y與x之間的函數關系式,并通過畫該函數圖象的草圖,觀察其圖象的變化趨勢,結合題意寫出當x取何值時,商場獲利潤不少于2160元.21.(10分)已知:如圖,平行四邊形ABCD中,E、F分別是邊BC和AD上的點,且BE=DF,求證:AE=CF22.(10分)如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別在OA,OC上.(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.23.(12分)為評估九年級學生的體育成績情況,某校九年級500名學生全部參加了“中考體育模擬考試”,隨機抽取了部分學生的測試成績作為樣本,并繪制出如下兩幅不完整的統計表和頻數分布直方圖:成績x分人數頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學生的成績;(2)通過計算將頻數分布直方圖補充完整;(3)若測試成績不低于40分為優秀,請估計本次測試九年級學生中成績優秀的人數.24.(14分)如圖,一次函數y=kx+b(k、b為常數,k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數y=nx(1)求一次函數與反比例函數的解析式;(2)記兩函數圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據題意可以求得P1,點P2,點P3的坐標,從而可以發現其中的變化的規律,從而可以求得P2018的坐標,本題得以解決.【詳解】解:由題意可得,
點P1(1,1),點P2(3,-1),點P3(5,1),
∴P2018的橫坐標為:2×2018-1=4035,縱坐標為:-1,
即P2018的坐標為(4035,-1),
故選:D.【點睛】本題考查了點的坐標變化規律,解答本題的關鍵是發現各點的變化規律,求出相應的點的坐標.2、D【解析】解:作直徑AD,連結BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.3、C【解析】
根據中位數的定義解答即可.【詳解】解:在這15個數中,處于中間位置的第8個數是1.1,所以中位數是1.1.
所以這些運動員跳高成績的中位數是1.1.
故選:C.【點睛】本題考查了中位數的意義.中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數.4、C【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據三角形的面積公式求出AD的長,再再根據EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.5、A【解析】【分析】根據一次函數性質:中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.由-2<0得,當x12時,y1>y2.【詳解】因為,點A(1,a)和點B(4,b)在直線y=-2x+m上,-2<0,所以,y隨x的增大而減小.因為,1<4,所以,a>b.故選A【點睛】本題考核知識點:一次函數性質.解題關鍵點:判斷一次函數中y與x的大小關系,關鍵看k的符號.6、A【解析】
在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長,根據周長求出直角邊之和,設其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長,過D作DE垂直于x軸,得到E為OA中點,求出OE的長,在直角三角形DOE中,利用勾股定理求出DE的長,利用反比例函數k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長為4+2,得到AB+AO=2,設AB=x,則AO=2-x,根據勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過D作DE⊥x軸,交x軸于點E,可得E為AO中點,∴OE=OA=(-)(假設OA=+,與OA=-,求出結果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點睛】本題屬于反比例函數綜合題,涉及的知識有:勾股定理,直角三角形斜邊的中線性質,三角形面積求法,以及反比例函數k的幾何意義,熟練掌握反比例的圖象與性質是解本題關鍵.7、D【解析】【分析】根據眾數和中位數的定義分別進行求解即可得.【詳解】這組數據中42出現了兩次,出現次數最多,所以這組數據的眾數是42,將這組數據從小到大排序為:37,38,40,42,42,所以這組數據的中位數為40,故選D.【點睛】本題考查了眾數和中位數,一組數據中出現次數最多的數據叫做眾數.將一組數據從小到大(或從大到小)排序后,位于最中間的數(或中間兩數的平均數)是這組數據的中位數.8、C【解析】
試題分析:A、B無法進行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點:因式分解【詳解】請在此輸入詳解!9、C【解析】
先根據勾股定理求出BC得長,再根據銳角三角函數正弦的定義解答即可.【詳解】如圖,根據勾股定理得,BC=AB∴sinA=BCAB故選C.【點睛】本題考查了銳角三角函數的定義及勾股定理,熟知銳角三角函數正弦的定義是解決問題的關鍵.10、C【解析】
解:將60000000000用科學記數法表示為:6×1.故選C.【點睛】本題考查科學記數法—表示較大的數,掌握科學計數法的一般形式是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
設PM=x,根據黃金分割的概念列出比例式,計算即可.【詳解】設PM=x,則PN=1-x,
由得,,
化簡得:x2+x-1=0,
解得:x1=,x2=(負值舍去),
所以PM的長為.【點睛】本題考查的是黃金分割的概念和性質,把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項,叫做把線段AB黃金分割.12、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根據等式的性質先將式子兩邊同時乘以-2,再將等式兩邊同時加上5,等式仍成立,所以本選項正確,②由a=b,得ac=bc,根據等式的性質,等式兩邊同時乘以相同的式子,等式仍成立,所以本選項正確,③由a=b,得,根據等式的性質,等式兩邊同時除以一個不為0的數或式子,等式仍成立,因為可能為0,所以本選項不正確,④由,得3a=2b,根據等式的性質,等式兩邊同時乘以相同的式子6c,等式仍成立,所以本選項正確,⑤因為互為相反數的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項錯誤,故答案為:①②④.13、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數的性質.14、增大.【解析】
根據二次函數的增減性可求得答案【詳解】∵二次函數y=x2的對稱軸是y軸,開口方向向上,∴當y隨x的增大而增大.故答案為:增大.【點睛】本題考查的知識點是二次函數的性質,解題的關鍵是熟練的掌握二次函數的性質.15、288°【解析】
母線長為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長與扇形的弧長相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設側面屬開圖扇形的國心角度數為n,則由得n=288°故答案為:288°.【點睛】本題利用了勾股定理,弧長公式,圓的周長公式和扇形面積公式求解.16、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.17、2【解析】【分析】根據一元二次方程x2+mx+m-2=0的根的判別式的符號進行判定二次函數y=x2+mx+m-2的圖象與x軸交點的個數.【詳解】二次函數y=x2+mx+m-2的圖象與x軸交點的縱坐標是零,即當y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實數根,即二次函數y=x2+mx+m-2的圖象與x軸有2個交點,故答案為:2.【點睛】本題考查了拋物線與x軸的交點.二次函數y=ax2+bx+c(a,b,c是常數,a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關系.△=b2-4ac決定拋物線與x軸的交點個數.△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.三、解答題(共7小題,滿分69分)18、13.1.【解析】試題分析:如圖,作CM∥AB交AD于M,MN⊥AB于N,根據=,可求得CM的長,在RT△AMN中利用三角函數求得AN的長,再由MN∥BC,AB∥CM,判定四邊形MNBC是平行四邊形,即可得BN的長,最后根據AB=AN+BN即可求得AB的長.試題解析:如圖作CM∥AB交AD于M,MN⊥AB于N.由題意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四邊形MNBC是平行四邊形,∴BN=CM=,∴AB=AN+BN=13.1米.考點:解直角三角形的應用.19、(1)y=-x2+2x+2;(2)詳見解析;(3)點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解析】
(1)根據題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標,根據點的坐標求出AB、BC、AC的值,根據勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據相似三角形的判定和性質求出PE的長,即可得出答案.【詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2+2x+2得:當x=0時,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如圖,當點Q在線段AP上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(1-,1),②如圖,當點Q在PA延長線上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴==3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±,∴P(1+,-3),或(1-,-3),綜上可知:點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【點睛】本題考查了二次函數的圖象和性質,用待定系數法求二次函數的解析式,相似三角形的性質和判定等知識點,能求出符合的所有情況是解此題的關鍵.20、(1)一天可獲利潤2000元;(2)①每件商品應降價2元或8元;②當2≤x≤8時,商店所獲利潤不少于2160元.【解析】:(1)原來一天可獲利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品應降價2或8元;②觀察圖像可得21、詳見解析【解析】
根據平行四邊形的性質和已知條件證明△ABE≌△CDF,再利用全等三角形的性質:即可得到AE=CF.【詳解】證:∵四邊形ABCD是平行四邊形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他證法也可)22、(1)見解析;(2)見解析.【解析】試題分析:(1)選取①②,利用ASA判定△BEO≌△DFO;也可選取②③,利用AAS判定△BEO≌△DFO;還可選取①③,利用SAS判定△BEO≌△DFO;(2)根據△BEO≌△DFO可得EO=FO,BO=DO,再根據等式的性質可得AO=CO,根據兩條對角線互相平分的四邊形是平行四邊形可得結論.試題解析:證明:(1)選取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四邊形ABCD是平行四邊形.點睛:此題主要考查了平行四邊形的判定,以及全等三角形的判定,關鍵是掌握
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年 消防安全管理員中級考試練習試題附答案
- 2025年中國暖手鼠標墊行業發展運行現狀及投資潛力預測報告
- 2025年 河南全科醫生特設崗位計劃招聘考試筆試試題附答案
- 2025年 赤峰巴林左旗招聘社區工作者考試試題附答案
- 2021-2026年中國多用途車市場供需現狀及投資戰略研究報告
- 請求批準的請示報告
- 中國挖機行業市場深度分析及投資規劃建議報告
- 2025年河北省石家莊市中考歷史試卷(含答案)
- 電動車噴漆培訓課件
- 醋酸鄰氨基對行業深度研究分析報告(2024-2030版)
- DB32∕T 2914-2016 危險場所電氣防爆安全檢測作業規范
- 中國海洋大學論文封面模板
- 遵義會議-(演示)(課堂PPT)
- HY∕T 122-2009 海洋傾倒區選劃技術導則
- 企業項目計劃書和研究開發項目目立項決議文件參考格式.docx
- 真空加熱爐的結構與原理及操作
- 訂單(英文范本)PurchaseOrder
- 雨污水合槽溝槽回填施工專項方案(優.選)
- 史密特火焰復合機培訓資料
- XX集團公司外聘專家顧問管理辦法-(7071)
- 《高等傳熱學》教學大綱
評論
0/150
提交評論