2023-2024學年上海市崇明區(qū)市級名校中考猜題數(shù)學試卷含解析_第1頁
2023-2024學年上海市崇明區(qū)市級名校中考猜題數(shù)學試卷含解析_第2頁
2023-2024學年上海市崇明區(qū)市級名校中考猜題數(shù)學試卷含解析_第3頁
2023-2024學年上海市崇明區(qū)市級名校中考猜題數(shù)學試卷含解析_第4頁
2023-2024學年上海市崇明區(qū)市級名校中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年上海市崇明區(qū)市級名校中考猜題數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.若2<<3,則a的值可以是()A.﹣7 B. C. D.122.數(shù)據(jù)3、6、7、1、7、2、9的中位數(shù)和眾數(shù)分別是()A.1和7 B.1和9 C.6和7 D.6和93.如圖,點P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變4.如圖,數(shù)軸上的A、B、C、D四點中,與數(shù)﹣表示的點最接近的是()A.點A B.點B C.點C D.點D5.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.6.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或7.如圖,在平面直角坐標系中,點A在x軸的正半軸上,點B的坐標為(0,4),將△ABO繞點B逆時針旋轉60°后得到△A'BO',若函數(shù)y=(x>0)的圖象經(jīng)過點O',則k的值為()A.2 B.4 C.4 D.88.的倒數(shù)是()A. B.3 C. D.9.如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米10.下列計算正確的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a2二、填空題(本大題共6個小題,每小題3分,共18分)11.若是關于的完全平方式,則__________.12.已知一個正多邊形的內角和是外角和的3倍,那么這個正多邊形的每個內角是_____度.13.如圖,AD=DF=FB,DE∥FG∥BC,則SⅠ:SⅡ:SⅢ=________.14.如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=(x<0)的圖象相交于點A和點B.當y1>y2>0時,x的取值范圍是_____.15.已知拋物線的部分圖象如圖所示,根據(jù)函數(shù)圖象可知,當y>0時,x的取值范圍是__.16.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.三、解答題(共8題,共72分)17.(8分)發(fā)現(xiàn)如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.18.(8分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結果提前5天完成任務,原計劃每天種多少棵樹?19.(8分)如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設后房檐到地面的高度為米,前房檐到地面的高度米,求的值.20.(8分)益馬高速通車后,將桃江馬跡塘的農產品運往益陽的運輸成本大大降低.馬跡塘一農戶需要將A,B兩種農產品定期運往益陽某加工廠,每次運輸A,B產品的件數(shù)不變,原來每運一次的運費是1200元,現(xiàn)在每運一次的運費比原來減少了300元,A,B兩種產品原來的運費和現(xiàn)在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現(xiàn)在的運費3020(1)求每次運輸?shù)霓r產品中A,B產品各有多少件;(2)由于該農戶誠實守信,產品質量好,加工廠決定提高該農戶的供貨量,每次運送的總件數(shù)增加8件,但總件數(shù)中B產品的件數(shù)不得超過A產品件數(shù)的2倍,問產品件數(shù)增加后,每次運費最少需要多少元.21.(8分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測旗桿頂部A的仰角為50°,觀測旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)22.(10分)(2016山東省煙臺市)由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產甲、乙兩種型號的防霧霾口罩共20萬只,且所有產品當月全部售出,原料成本、銷售單價及工人生產提成如表:(1)若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產品分別是多少萬只?(2)公司實行計件工資制,即工人每生產一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)23.(12分)先化簡代數(shù)式,再從范圍內選取一個合適的整數(shù)作為的值代入求值。24.計算:÷–+20180

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項.【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項,只有選項C符合題意.故選C.【點睛】考查了估算無理數(shù)的大小,估算無理數(shù)大小要用夾逼法.2、C【解析】

如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).【詳解】解:∵7出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是7;∵從小到大排列后是:1,2,3,6,7,7,9,排在中間的數(shù)是6,∴中位數(shù)是6故選C.【點睛】本題考查了中位數(shù)和眾數(shù)的求法,解答本題的關鍵是熟練掌握中位數(shù)和眾數(shù)的定義.3、D【解析】

作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.4、B【解析】

,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.5、A【解析】

根據(jù)一次函數(shù)y=kx+b的圖象可知k>1,b<1,再根據(jù)k,b的取值范圍確定一次函數(shù)y=?bx+k圖象在坐標平面內的位置關系,即可判斷.【詳解】解:∵一次函數(shù)y=kx+b的圖象可知k>1,b<1,

∴-b>1,∴一次函數(shù)y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【點睛】本題考查了一次函數(shù)的圖象與系數(shù)的關系.函數(shù)值y隨x的增大而減小?k<1;函數(shù)值y隨x的增大而增大?k>1;一次函數(shù)y=kx+b圖象與y軸的正半軸相交?b>1,一次函數(shù)y=kx+b圖象與y軸的負半軸相交?b<1,一次函數(shù)y=kx+b圖象過原點?b=1.6、D【解析】

根據(jù)=5,=7,得,因為,則,則=5-7=-2或-5-7=-12.故選D.7、C【解析】

根據(jù)題意可以求得點O'的坐標,從而可以求得k的值.【詳解】∵點B的坐標為(0,4),

∴OB=4,

作O′C⊥OB于點C,

∵△ABO繞點B逆時針旋轉60°后得到△A'BO',

∴O′B=OB=4,

∴O′C=4×sin60°=2,BC=4×cos60°=2,

∴OC=2,

∴點O′的坐標為:(2,2),

∵函數(shù)y=(x>0)的圖象經(jīng)過點O',

∴2=,得k=4,

故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化,解題的關鍵是利用數(shù)形結合的思想和反比例函數(shù)的性質解答.8、A【解析】

解:的倒數(shù)是.故選A.【點睛】本題考查倒數(shù),掌握概念正確計算是解題關鍵.9、A【解析】

作BM⊥ED交ED的延長線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構建方程即可解決問題.【詳解】作BM⊥ED交ED的延長線于M,CN⊥DM于N.在Rt△CDN中,∵,設CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.10、B【解析】

利用完全平方公式及平方差公式計算即可.【詳解】解:A、原式=a2-6a+9,本選項錯誤;

B、原式=a2-9,本選項正確;

C、原式=a2-2ab+b2,本選項錯誤;

D、原式=a2+2ab+b2,本選項錯誤,

故選:B.【點睛】本題考查了平方差公式和完全平方公式,熟練掌握公式是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進而求出答案.詳解:∵x2+2(m-3)x+16是關于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關鍵.12、1.【解析】

先由多邊形的內角和和外角和的關系判斷出多邊形的邊數(shù),即可得到結論.【詳解】設多邊形的邊數(shù)為n.因為正多邊形內角和為(n-2)?180°,正多邊形外角和為根據(jù)題意得:(n-2)?180解得:n=8.∴這個正多邊形的每個外角=360則這個正多邊形的每個內角是180°故答案為:1.【點睛】考查多邊形的內角和與外角和,熟練掌握多邊形內角和公式是解題的關鍵.13、1:3:5【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.故答案為1:3:5.點睛:本題考查了平行線的性質及相似三角形的性質.相似三角形的面積比等于相似比的平方.14、-2<x<-0.5【解析】

根據(jù)圖象可直接得到y(tǒng)1>y2>0時x的取值范圍.【詳解】根據(jù)圖象得:當y1>y2>0時,x的取值范圍是﹣2<x<﹣0.5,故答案為﹣2<x<﹣0.5.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟悉待定系數(shù)法以及理解函數(shù)圖象與不等式的關系是解題的關鍵.15、【解析】

根據(jù)拋物線的對稱軸以及拋物線與x軸的一個交點,確定拋物線與x軸的另一個交點,再結合圖象即可得出答案.【詳解】解:根據(jù)二次函數(shù)圖象可知:拋物線的對稱軸為直線,與x軸的一個交點為(-1,0),∴拋物線與x軸的另一個交點為(3,0),結合圖象可知,當y>0時,即x軸上方的圖象,對應的x的取值范圍是,故答案為:.【點睛】本題考查了二次函數(shù)與不等式的問題,解題的關鍵是通過圖象確定拋物線與x軸的另一個交點,并熟悉二次函數(shù)與不等式的關系.16、【解析】由題意易得四邊形ABFE是正方形,設AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質,相似多邊形的性質等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)見解析;(3)1.【解析】

(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點睛】此題考查多邊形的內角和外角,,解題的關鍵是熟練掌握三角形的外角的性質,屬于中考常考題型18、原計劃每天種樹40棵.【解析】

設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,根據(jù)實際完成的天數(shù)比計劃少5天為等量關系建立方程求出其解即可.【詳解】設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,由題意,得?=5,解得:x=40,經(jīng)檢驗,x=40是原方程的解.答:原計劃每天種樹40棵.19、【解析】

過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,由后坡度AB與前坡度AC相等知∠BAD=∠CAE=30°,從而得出BD=2、CE=3,據(jù)此可得.【詳解】解:過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,

∵房子后坡度AB與前坡度AC相等,

∴∠BAD=∠CAE,

∵∠BAC=120°,

∴∠BAD=∠CAE=30°,

在直角△ABD中,AB=4米,

∴BD=2米,

在直角△ACE中,AC=6米,

∴CE=3米,

∴a-b=1米.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,解題的關鍵是根據(jù)題意構建直角三角形,并熟練掌握坡度坡角的概念.20、(1)每次運輸?shù)霓r產品中A產品有10件,每次運輸?shù)霓r產品中B產品有30件,(2)產品件數(shù)增加后,每次運費最少需要1120元.【解析】

(1)設每次運輸?shù)霓r產品中A產品有x件,每次運輸?shù)霓r產品中B產品有y件,根據(jù)表中的數(shù)量關系列出關于x和y的二元一次方程組,解之即可,(2)設增加m件A產品,則增加了(8-m)件B產品,設增加供貨量后得運費為W元,根據(jù)(1)的結果結合圖表列出W關于m的一次函數(shù),再根據(jù)“總件數(shù)中B產品的件數(shù)不得超過A產品件數(shù)的2倍”,列出關于m的一元一次不等式,求出m的取值范圍,再根據(jù)一次函數(shù)的增減性即可得到答案.【詳解】解:(1)設每次運輸?shù)霓r產品中A產品有x件,每次運輸?shù)霓r產品中B產品有y件,根據(jù)題意得:,解得:,答:每次運輸?shù)霓r產品中A產品有10件,每次運輸?shù)霓r產品中B產品有30件,(2)設增加m件A產品,則增加了(8-m)件B產品,設增加供貨量后得運費為W元,增加供貨量后A產品的數(shù)量為(10+m)件,B產品的數(shù)量為30+(8-m)=(38-m)件,根據(jù)題意得:W=30(10+m)+20(38-m)=10m+1060,由題意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函數(shù)W隨m的增大而增大∴當m=6時,W最小=1120,答:產品件數(shù)增加后,每次運費最少需要1120元.【點睛】本題考查了一次函數(shù)的應用,二元一次方程組的應用和一元一次不等式得應用,解題的關鍵:(1)正確根據(jù)等量關系列出二元一次方程組,(2)根據(jù)數(shù)量關系列出一次函數(shù)和不等式,再利用一次函數(shù)的增減性求最值.21、7.6m.【解析】

利用CD及正切函數(shù)的定義求得BC,AC長,把這兩條線段相減即為AB長【詳解】解:由題意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗桿AB的高度約為7.6m.【點睛】此題主要考查了解直角三角形的應用,正確應用銳角三角函數(shù)關系是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論