2023-2024學年四川雅安天立校中考數學最后沖刺濃縮卷含解析_第1頁
2023-2024學年四川雅安天立校中考數學最后沖刺濃縮卷含解析_第2頁
2023-2024學年四川雅安天立校中考數學最后沖刺濃縮卷含解析_第3頁
2023-2024學年四川雅安天立校中考數學最后沖刺濃縮卷含解析_第4頁
2023-2024學年四川雅安天立校中考數學最后沖刺濃縮卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年四川雅安天立校中考數學最后沖刺濃縮精華卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐2.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.53.如圖,已知直線,點E,F分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°4.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進入該公園游玩,則佳佳和琪琪恰好從同一個入口進入該公園的概率是()A. B. C. D.5.下列因式分解正確的是A. B.C. D.6.一組數據是4,x,5,10,11共五個數,其平均數為7,則這組數據的眾數是()A.4 B.5 C.10 D.117.7的相反數是()A.7 B.-7 C. D.-8.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數為()A.50° B.110° C.130° D.150°9.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個10.已知y關于x的函數圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2二、填空題(本大題共6個小題,每小題3分,共18分)11.已知反比例函數y=,當x>0時,y隨x增大而減小,則m的取值范圍是_____.12.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.13.某種水果的售價為每千克a元,用面值為50元的人民幣購買了3千克這種水果,應找回元(用含a的代數式表示).14.經過某十字路口的汽車,它可能繼續直行,也可能向左轉或向右轉.如果這三種可能性大小相同,現有兩輛汽車先后經過這個十字路口,則至少有一輛汽車向左轉的概率是___.15.如圖,在3×3的正方形網格中,點A,B,C,D,E,F,G都是格點,從C,D,E,F,G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.16.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點D為AB的中點,以點D為圓心作圓,半圓恰好經過三角形的直角頂點C,以點D為頂點,作90°的∠EDF,與半圓交于點E,F,則圖中陰影部分的面積是____.三、解答題(共8題,共72分)17.(8分)4月9日上午8時,2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個孩子一同參加了比賽,下面是兩個孩子與記者的對話:根據對話內容,請你用方程的知識幫記者求出哥哥和妹妹的年齡.18.(8分)如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.求證:△ADE≌△CBF;若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結論.19.(8分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN20.(8分)如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經過反彈后,球剛好彈到D點位置.求BF的長.21.(8分)如圖,在圖中求作⊙P,使⊙P滿足以線段MN為弦且圓心P到∠AOB兩邊的距離相等.(要求:尺規作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆加黑)22.(10分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.23.(12分)某校對六至九年級學生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行隨機抽樣調查,從而得到一組數據.如圖是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少學生進行了抽樣調查?本次抽樣調查中,最喜歡籃球活動的有多少?占被調查人數的百分比是多少?若該校九年級共有200名學生,如圖是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請估計全校六至九年級學生中最喜歡跳繩活動的人數約為多少?24.(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:根據一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.2、A【解析】

連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.3、C【解析】

根據平行線的性質,可得的度數,再根據以及平行線的性質,即可得出的度數.【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質的運用,解題時注意:兩直線平行,同旁內角互補,且內錯角相等.4、B【解析】

首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果,可求得佳佳和琪琪恰好從同一個入口進入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結果,其中佳佳和琪琪恰好從同一個入口進入該公園的有4種等可能結果,所以佳佳和琪琪恰好從同一個入口進入該公園的概率為,故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數與總情況數之比.5、D【解析】

直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.6、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據眾數的定義可得這組數據的眾數是3.故選B.考點:3.眾數;3.算術平均數.7、B【解析】

根據只有符號不同的兩個數互為相反數,可得答案.【詳解】7的相反數是?7,故選:B.【點睛】此題考查相反數,解題關鍵在于掌握其定義.8、C【解析】

如圖,根據長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.9、C【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.10、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、m>1.【解析】分析:根據反比例函數y=,當x>0時,y隨x增大而減小,可得出m﹣1>0,解之即可得出m的取值范圍.詳解:∵反比例函數y=,當x>0時,y隨x增大而減小,∴m﹣1>0,解得:m>1.故答案為m>1.點睛:本題考查了反比例函數的性質,根據反比例函數的性質找出m﹣1>0是解題的關鍵.12、【解析】

解:設E(x,x),∴B(2,x+2),∵反比例函數(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為13、(50-3a).【解析】試題解析:∵購買這種售價是每千克a元的水果3千克需3a元,∴根據題意,應找回(50-3a)元.考點:列代數式.14、.【解析】

根據題意,畫出樹狀圖,然后根據樹狀圖和概率公式求概率即可.【詳解】解:畫樹狀圖得:共有9種等可能的結果,至少有一輛汽車向左轉的有5種情況,至少有一輛汽車向左轉的概率是:.故答案為:.【點睛】此題考查的是求概率問題,掌握樹狀圖的畫法和概率公式是解決此題的關鍵.15、.【解析】

找出從C,D,E,F,G五個點中任意取一點組成等腰三角形的個數,再根據概率公式即可得出結論.【詳解】∵從C,D,E,F,G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【點睛】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現的結果數與所有可能出現的結果數的商是解答此題的關鍵.16、π﹣1.【解析】

連接CD,作DM⊥BC,DN⊥AC,證明△DMG≌△DNH,則S四邊形DGCH=S四邊形DMCN,求得扇形FDE的面積,則陰影部分的面積即可求得.【詳解】連接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,點D為AB的中點,∴DC=AB=1,四邊形DMCN是正方形,DM=.則扇形FDE的面積是:=π.∵CA=CB,∠ACB=90°,點D為AB的中點,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四邊形DGCH=S四邊形DMCN=1.則陰影部分的面積是:π﹣1.故答案為π﹣1.【點睛】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關鍵.三、解答題(共8題,共72分)17、今年妹妹6歲,哥哥10歲.【解析】

試題分析:設今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據兩個孩子的對話,即可得出關于x、y的二元一次方程組,解之即可得出結論.試題解析:設今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據題意得:解得:.答:今年妹妹6歲,哥哥10歲.考點:二元一次方程組的應用.18、(1)證明見解析;(2)若∠ADB是直角,則四邊形BEDF是菱形,理由見解析.【解析】

(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點,可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先證明BE與DF平行且相等,然后根據一組對邊平行且相等的四邊形是平行四邊形證明四邊形BEDF是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據菱形的判定可以得到四邊形是菱形.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分別為邊AB、CD的中點,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,則四邊形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四邊形BEDF是平行四邊形,連接EF,在?ABCD中,E、F分別為邊AB、CD的中點,∴DF∥AE,DF=AE,∴四邊形AEFD是平行四邊形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四邊形BFDE是平行四邊形,∴四邊形BFDE是菱形.【點睛】1、平行四邊形的性質;2、全等三角形的判定與性質;3、菱形的判定19、詳見解析.【解析】

只要證明∠EAM=∠ECN,根據同位角相等兩直線平行即可證明.【詳解】證明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【點睛】本題考查平行線的判定和性質,解題的關鍵是熟練掌握平行線的性質和判定,屬于中考基礎題.20、BF的長度是1cm.【解析】

利用“兩角法”證得△BEF∽△CDF,利用相似三角形的對應邊成比例來求線段CF的長度.【詳解】解:如圖,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴=,又∵AD=BC=260cm,AB=CD=130cm,AE=60cm∴BE=70cm,CD=130cm,BC=260cm,CF=(260-BF)cm∴=,解得:BF=1.即:BF的長度是1cm.【點睛】本題主要考查相似三角形的判定和性質,關鍵要掌握:有兩角對應相等的兩三角形相似;兩三角形相似,對應邊的比相等.21、見解析.【解析】試題分析:先做出∠AOB的角平分線,再求出線段MN的垂直平分線就得到點P.試題解析:考點:尺規作圖角平分線和線段的垂直平分線、圓的性質.22、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解析】

(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),代入拋物線解析式,即可得出結果.【詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設直線AD的解析式為y=kx+a,把A和D的坐標代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論