2023-2024學年云南省個舊市北郊教育聯合會中考數學猜題卷含解析_第1頁
2023-2024學年云南省個舊市北郊教育聯合會中考數學猜題卷含解析_第2頁
2023-2024學年云南省個舊市北郊教育聯合會中考數學猜題卷含解析_第3頁
2023-2024學年云南省個舊市北郊教育聯合會中考數學猜題卷含解析_第4頁
2023-2024學年云南省個舊市北郊教育聯合會中考數學猜題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年云南省個舊市北郊教育聯合會中考數學猜題卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉,使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數為()A.80° B.90° C.100° D.120°2.如圖,不等式組的解集在數軸上表示正確的是()A. B.C. D.3.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm4.如圖,這是根據某班40名同學一周的體育鍛煉情況繪制的條形統計圖,根據統計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數、中位數分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.55.為了大力宣傳節約用電,某小區隨機抽查了10戶家庭的月用電量情況,統計如下表,關于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數12421A.極差是3 B.眾數是4 C.中位數40 D.平均數是20.56.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20187.2018年春運,全國旅客發送量達29.8億人次,用科學記數法表示29.8億,正確的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10108.下列方程有實數根的是()A. B.C.x+2x?1=0 D.9.如圖所示的圖形為四位同學畫的數軸,其中正確的是()A. B.C. D.10.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點,在二次函數的圖象上,若,則__________.(填“”“”“”)12.和平中學自行車停車棚頂部的剖面如圖所示,已知AB=16m,半徑OA=10m,高度CD為____m.13.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤14.圖1、圖2的位置如圖所示,如果將兩圖進行拼接(無覆蓋),可以得到一個矩形,請利用學過的變換(翻折、旋轉、軸對稱)知識,將圖2進行移動,寫出一種拼接成矩形的過程______.15.如圖,點A、B、C是圓O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF=__.16.我國自主研發的某型號手機處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學記數法可表示為_____m.三、解答題(共8題,共72分)17.(8分)為了維護國家主權和海洋權利,海監部門對我國領海實現了常態化巡航管理,如圖,正在執行巡航任務的海監船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數;已知在燈塔P的周圍25海里內有暗礁,問海監船繼續向正東方向航行是否安全?.18.(8分)已知關于x的方程.(1)當該方程的一個根為1時,求a的值及該方程的另一根;(2)求證:不論a取何實數,該方程都有兩個不相等的實數根.19.(8分)閱讀材料:對于線段的垂直平分線我們有如下結論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結AE、BE,△ABE經順時針旋轉后與△BCF重合.(I)旋轉中心是點,旋轉了(度);(II)當點E從點D向點C移動時,連結AF,設AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數;若改變,請說出變化情況.20.(8分)如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.21.(8分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?22.(10分)如圖,在△ABC中,BC=6,AB=AC,E,F分別為AB,AC上的點(E,F不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.(1)請判斷四邊形AEA′F的形狀,并說明理由;(2)當四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.23.(12分)已知關于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數,方程①的根為非負數.(1)求m的取值范圍;(2)若方程②有兩個整數根x1、x2,且m為整數,求方程②的整數根.24.如圖,正方形ABCD中,BD為對角線.(1)尺規作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若AB=4,求△DEF的周長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據旋轉的性質得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據三角形外角性質得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉的性質,全等三角形的性質和判定,三角形內角和定理,三角形外角性質的應用,掌握旋轉變換的性質是解題的關鍵.2、B【解析】

首先分別解出兩個不等式,再確定不等式組的解集,然后在數軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數軸上表示解集,把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.3、C【解析】

利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側面展開圖的弧長=;圓錐的底面周長等于側面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.4、A【解析】

根據中位數、眾數的概念分別求得這組數據的中位數、眾數.【詳解】解:眾數是一組數據中出現次數最多的數,即8;而將這組數據從小到大的順序排列后,處于20,21兩個數的平均數,由中位數的定義可知,這組數據的中位數是9.故選A.【點睛】考查了中位數、眾數的概念.本題為統計題,考查眾數與中位數的意義,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會錯誤地將這組數據最中間的那個數當作中位數.5、C【解析】

極差、中位數、眾數、平均數的定義和計算公式分別對每一項進行分析,即可得出答案.【詳解】解:A、這組數據的極差是:60-25=35,故本選項錯誤;

B、40出現的次數最多,出現了4次,則眾數是40,故本選項錯誤;

C、把這些數從小到大排列,最中間兩個數的平均數是(40+40)÷2=40,則中位數是40,故本選項正確;

D、這組數據的平均數(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;

故選:C.【點睛】本題考查了極差、平均數、中位數、眾數的知識,解答本題的關鍵是掌握各知識點的概念.6、A【解析】

根據去括號法則、絕對值的性質、零指數冪的計算法則及負整數指數冪的計算法則依次計算各項即可解答.【詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【點睛】本題去括號法則、絕對值的性質、零指數冪的計算法則及負整數指數冪的計算法則,熟知去括號法則、絕對值的性質、零指數冪及負整數指數冪的計算法則是解決問題的關鍵.7、B【解析】

根據科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,且為這個數的整數位數減1,由此即可解答.【詳解】29.8億用科學記數法表示為:29.8億=2980000000=2.98×1.故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.8、C【解析】分析:根據方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項不符合題意;B.∵≥0,∴=﹣1無解,故本選項不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實數根,故本選項符合題意;D.解分式方程=,可得x=1,經檢驗x=1是分式方程的增根,故本選項不符合題意.故選C.點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.9、D【解析】

根據數軸三要素:原點、正方向、單位長度進行判斷.【詳解】A選項圖中無原點,故錯誤;B選項圖中單位長度不統一,故錯誤;C選項圖中無正方向,故錯誤;D選項圖形包含數軸三要素,故正確;故選D.【點睛】本題考查數軸的畫法,熟記數軸三要素是解題的關鍵.10、D【解析】

如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點睛】本題主要考查了平行線的性質以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內角互補.解決問題的關鍵是作平行線.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】拋物線的對稱軸為:x=1,∴當x>1時,y隨x的增大而增大.∴若x1>x2>1

時,y1>y2

.故答案為>12、1.【解析】

由CD⊥AB,根據垂徑定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理計算出OD,則通過CD=OC?OD求出CD.【詳解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半徑OA=10m,∴OD==6,∴CD=OC﹣OD=10﹣6=1(m).故答案為1.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了切線的性質定理以及勾股定理.13、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結論為:②③.考點:1.相似三角形的判定與性質;2.全等三角形的判定與性質.14、先將圖2以點A為旋轉中心逆時針旋轉,再將旋轉后的圖形向左平移5個單位.【解析】

變換圖形2,可先旋轉,然后平移與圖2拼成一個矩形.【詳解】先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位可以與圖1拼成一個矩形.故答案為:先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位.【點睛】本題考查了平移和旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.15、15°【解析】

根據平行四邊形的性質和圓的半徑相等得到△AOB為等邊三角形,根據等腰三角形的三線合一得到∠BOF=∠AOF=30°,根據圓周角定理計算即可.【詳解】解答:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圓周角定理得,故答案為15°.16、1×10﹣1【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:10nm用科學記數法可表示為1×10-1m,

故答案為1×10-1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.三、解答題(共8題,共72分)17、(1)30°;(2)海監船繼續向正東方向航行是安全的.【解析】

(1)根據直角的性質和三角形的內角和求解;(2)過點P作PH⊥AB于點H,根據解直角三角形,求出點P到AB的距離,然后比較即可.【詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進入暗礁區,繼續航行仍然安全.考點:解直角三角形18、(1),;(2)證明見解析.【解析】試題分析:(1)根據一元二次方程根與系數的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數,該方程都有兩個不相等的實數根.考點:1.一元二次方程根與系數的關系;2.一元二次方程根根的判別式;3.配方法的應用.19、B60【解析】分析:(1)根據旋轉的性質可得出結論;(2)根據旋轉的性質可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進而得出∠APC的度數.詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設與交于點∵直線是等邊的對稱軸∴,∵經順時針旋轉后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉的性質,解題的關鍵是熟記旋轉的性質及垂直平分線的性質,注意只證明一點是不能說明這條直線是垂直平分線的.20、(1)見解析;(2)菱形.【解析】

(1)根據角平分線的性質可得∠ADE=∠CDE,再由平行線的性質可得AB∥CD,易得AD=AE,從而可證得結論;(2)若點與點重合,可證得AD=AB,根據鄰邊相等的平行四邊形是菱形即可作出判斷.【詳解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵點E與B重合,∴AD=AB.∵四邊形ABCD是平行四邊形∴平行四邊形ABCD為菱形.【點睛】本題考查了平行四邊形的性質,平行線的性質,等腰三角形的性質,菱形的性質,熟練掌握各知識是解題的關鍵.21、1千米/時【解析】

設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據由貨輪往返兩個碼頭之間,可知順水航行的距離與逆水航行的距離相等列出方程,解方程即可求解.【詳解】設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時.【點睛】本題考查了一元一次方程的應用,讀懂題意,找出等量關系,設出未知數后列出方程是解決此類題目的基本思路.22、(1)四邊形AEA′F為菱形.理由見解析;(2)1.【解析】

(1)先證明AE=AF,再根據折疊的性質得AE=A′E,AF=A′F,然后根據菱形的判定方法可判斷四邊形AEA′F為菱形;(2)四先利用四邊形AEA′F是正方形得到∠A=90°,則AB=AC=BC=6,然后利用正方形AEA′F的面積是△ABC的一半得到AE2=??6?6,然后利用算術平方根的定義求AE即可.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論