




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
GamesPlane:AugmentedRealityGamesman
MillerHollinger
ElectricalEngineeringandComputerSciencesUniversityofCalifornia,Berkeley
TechnicalReportNo.UCB/EECS-2025-136
/Pubs/TechRpts/2025/EECS-2025-136.html
June4,2025
Copyright?2025,bytheauthor(s).
Allrightsreserved.
Permissiontomakedigitalorhardcopiesofallorpartofthisworkfor
personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare
notmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermission.
Acknowledgement
ToDanGarcia,forbeinganexcellentresearchadvisor.
ToEricPaulosforkindlyreviewingthispaper.
ToJoshZhangforhisassistanceincameracalibrationwhichgreatlyimprovedthesystem’s
accuracy.
ToAlvaroEstrellaforextendingtheGamesmanUniAPI.
ToSriyaKantipudiforaddingnewgamestoGamesPlane.
ToAbrahamHsuforconsultingwithmeaboutvectormath.
ToGamesCraftersasawhole.
ToBarakStout,my9th-gradecomputerscienceteacherwhosepatienceandknowledgeledmeintothewonderfulworldofcomputation.
Aboveall,tomyparents,JohnandKarenHollinger,forsupportingme
throughoutmyacademiccareerandbeinganendlesssourceofkindnessandadvice.
1
GamesPlane:AugmentedRealityGamesman
byMillerHollinger
ResearchProject
SubmittedtotheDepartmentofElectricalEngineeringandComputerSciences,UniversityofCalifornia,Berkeley,inpartialsatisfactionoftherequirementsforthedegreeofMasterofScience,PlanII.
ApprovalfortheReportandComprehensiveExamination:
Committee:
TeachingProfessorDanGarciaResearchAdvisor
Date
*******
ProfessorEricPaulosSecondReader
Date
2
Abstract
Inthisreport,IintroduceGamesPlane,asystemthatusesaugmentedrealitytooverlaythepre-calculatedcoloredvalueofmovesforaplayerplayingaphysicaltwo-person,
complete-informationboardgame.Thevaluescomefromapplicationprogramminginterface(API)callstoourGamesmansystemthathasstronglysolvedthegame.Itprovides20framespersecondupdatesforboardsofallshapesandsizeswithnear-100%accuracy.Finally,itishighlyconfigurable,withtoolsanddocumentationprovidedforeasyextensibility.
3
Acknowledgements
ToDanGarcia,forbeinganexcellentresearchadvisor.Hisguidance,encouragement,and
positivitymadeGamesPlanepossible,andmyloveforcomputerscienceresearchisthankstohim.
ToEricPaulosforkindlyreviewingthispaperandhisfeedbackontheproject’sdevelopment.
ToJoshZhangforworkingalongsidemetodevelopandtesttheGamesPlaneproject,andespeciallyforhisassistanceincameracalibrationwhichgreatlyimprovedthesystem’s
accuracy.
ToAlvaroEstrellaforextendingtheGamesmanUniAPItointegratewithGamesPlane.
ToSriyaKantipudiforaddingnewgamestoGamesPlaneandworkingwithmetoimproveitsaccuracy.
ToAbrahamHsuforconsultingwithmeaboutvectormath.
ToGamesCraftersasawhole;fortheMonday-Wednesday-Fridaylunchmeetingsandthelate-nighthangouts.Mycollegeexperiencewouldnothavebeenthesamewithoutthem.
ToBarakStout,my9th-gradecomputerscienceteacherwhosepatienceandknowledgeledmeintothewonderfulworldofcomputation.
Aboveall,tomyparents,JohnandKarenHollinger,forsupportingmethroughoutmyacademic
careerandbeinganendlesssourceofkindnessandadvice.
4
Contents
Abstract 2
Acknowledgements 3
Contents 4
Chapter1:Introduction 6
Chapter2:Background 8
2.1:GamesCrafers,Gamesman,GamesmanUni,anGamesPlane td8
2.2:BringingGamesmanoPhysicalBoarGames td8
Chapter3:RelatedWork 10
3.1:Makingrealgamesvirual:Trackingoargamepieces1 1tbd[]0
3.2:AugmeneRealiyChessAnalyzerARChessAnalyzer2 1tdt()[]0
3.:AnInelligenChessPieceDeecionTool 13tttt[3]0
3.4:Chessoaranchesspiecerecogniionwihhesupporofneuralneworks4 11bddttttt[]
3.:ChessPieceDeecion 115tt[5]
3.:ComparisonoGamesPlane 116t
3.7:SysemComparisonChar 1tt3
Chapter4:DevelopmentandChallenges 14
4.1:ConcepualizaionofGamesPlane 14tt
4.2:FirsIeraion 14ttt
4.:TransiionoArUco-OnlyApproach 13tt5
4.4:GamesPlaneArchiecure 1tt6
4.:PrinaleGamesPlanes 175tb
4.:SofwareDevelopmen 16tt8
4.7:HomePage 20
4.:Crafsman 218t
4.:Documenaion 29tt3
4.1:LaunchGame 240
4.11:SarerGuie 2ttd6
Chapter5:Results 27
5.1:BoarSaeDeecion 27dtttt
5.2:OpimalAccuracy 27t
5.:HeighTolerance 23t8
5.4:PieceRoaionTolerance 2tt8
5.:PoorlyAlignePiece 25d9
5.:CameraRoaions 26tt9
5.7:OherShorcomings 1tt3
5.:Spee 18d3
Chapter6:FurtherWork 32
Chapter7:Conclusion 33
5
Bibliography 34
Appendix:User’sGuide 35
Appenix1:SaringGamesPlaneLocally dtt35
Appenix2:PlayingaGamewihGamesPlane dt35
Appenix:AingaNewGame d3dd35
Sep1:CreaeaPhysicalBoaranPieces ttdd36
Sep2:Creaehe.sonFileinCrafsman tttjt36
Sep:WrieaUWAPIConverer 7t3tt3
Sep4:RegiserhegameinAppLaunchGame.py ttt/38
Sep:PlayYourNewGame! t538
Appenix4:Trouleshooing dbt38
6
Chapter1:Introduction
GamesCraftersisaresearchgroupdedicatedtosolving,analyzing,andplayingtwo-playerturn-basedcomplete-informationgamessuchasTic-Tac-Toe,NineMen’sMorris,orOthello.GamesCrafters’systemGamesman[8]accomplishesthisgoal,usingacodedescriptionofagametocreateasolution.Overtime,itsscopeexpandedanditaddedpuzzlesandmore
complexgames.Apublicwebsite,GamesmanUni[9],wascreatedtotransitionGamesmanawayfromadownload-and-recompileX11-based-GUImodelandtowardsthemodernageofwebapps.Figure1.1showsaviewofthesite.
Figure1.1.GamesmanUnisportsnearly100playablegamesandpuzzles,allstronglysolved.
Despitethisgrowth,Gamesmanhadyettocrossacriticalboundary…intothereal
world.Althoughmostofthegamesitsolvedwerenearlyalwaysplayedface-to-face,findingthevaluesofmovesthroughGamesmanrequiredopeningawebsite(orrunningalocalscript)toinputineachmoveoneatatime,thencross-referencetheresultswiththereal-worldboard.
WithGamesPlane,weentertherealworldusingArUcotracking-poweredboardsandpieces.GamesPlaneisasystemforcreating,readingpiecedatafrom,anddisplaying
informationontospeciallydesignedgameboards.UsingGamesPlane,youcandefinethe
informationforagameboard,useacameratolocatewherethepiecesare,andthenseethebestmovesinaugmentedreality.Indoingso,GamesPlaneservesasareal-lifeinterfacetoGamesman,bringingtheperfectplayhintsoncerelegatedtocomputerscreenstophysicalgameboards.
7
Figure1.2.TheoverlaydisplayedbyGamesPlaneonBlack’sturn.Yellowmovesare
“draw”moves,andredmovesare“losing”moves.Greenmovesare“winning”moves,thoughno
suchmovesexistinthisparticularposition.
AuserofGamesPlanecanprintoutoneofmanygameboardandpiecesets,thenrunGamesPlaneontheirdevice.GamesPlanefindsthepiecesandsendsthatinformationofftoGamesmanUni,whichreturnsanimageshowingvalidmovesintheposition,withgreen
“winning”,yellow“tie”and“draw”moves,andred“losing”moves.Thisimageisdisplayedin
augmentedreality(i.e.,projectedoverthecamerapicture)usinginformationabouttheboard,creatingthefinalresult:areal-lifeimageoverlaidwithanARgraphicshowingmovesbasedonthepieces’positions(Figure1.2).
GamesPlaneworksusingArUcomarkers,whicharesquareblack-and-whitetags
featuringspecificpatternseasilyrecognizablebycameras.DetectionofArUcomarkersis
implementedbyOpenCV,makingthemaneasytoolforcomputervisionprojectssuchas
GamesPlane.Auserplacesanchormarkersontoagameboardandattachesthemtopieces.Thesemarkers’relativepositionsinanimageareusedtodeterminewherethepiecesareinspace,andthenonthegameboard.
GamesPlanehastheuniquequalityofbeingextensiblebydesign:withitsintegrated
documentation,starterguide,andCraftsmantool,futureuserswillhaveaneasytimelearningtousethesystemandsetupboards.
Thesystemrunsatahighframerate—atleast20framespersecond,evenonlow-endsystems.Therearecurrently5gamesthatfunctiononGamesPlane.Templatesareprovidedtoprint8.5x11”boardsforavarietyofgames,buthypotheticallyanysizeorshapecanfunctionaslongascameraqualityishighenough.ItcanfailwhenArUcomarkersareobscuredorthe
cameraisattoolowofanangle.butitisalsofairlytolerant:itfunctionsevenwhenpiecesare
imperfectlyaligned,unevenlyrotated,orofdifferentsizes.
8
Chapter2:Background
2.1:GamesCrafters,Gamesman,GamesmanUni,andGamesPlane
GamesCrafters’centralgoalhasalwaysbeentostronglysolvedeterministictwo-player
turn-basedgameswithcompleteinformationlikeTic-Tac-Toe,orConnectFour.Weusea
systemcalledGamesman[8]tosolvethesegames;itexhaustivelysearchesallpossibleboardstatesforagame,eventuallycreatingadatabasestoringeverypositionandifitisawin,lose,tie,ordrawinperfectplay(andhowmanymovesitisfromtheendofthegame).UsersmostoftenaccessthesedatabasesusingGamesmanUni[9],apubliclyavailablewebsitethatlets
usersplayboardgamesonlinethroughgraphicaluserinterfaces(GUIs).Duringtheirgames,playersareshownvaluemoves:themovestheycanmakecoloredred,yellow,orgreenforiftheyarelosing,drawing/tieing,orwinningrespectively.ThisflowofinformationisshowninFigure2.1.
Figure2.1.InformationaboutthegameisgeneratedbyGamesmanandthenservedbyUWAPIto
GamesmanUni.TheuserinterfacecreatedbyGamesmanUniissenttoGamesPlane.
2.2:BringingGamesmantoPhysicalBoardGames
Foralongtimenow,ithasbeenagoalofthelabtobringthepowerofGamesmantothephysicaldomain.Thereasonforthisisfairlystraightforward:boardgamesaregenerallyplayedface-to-face,notonline.BeforeGamesPlane,touseGamesmanwithareal-lifegamewould
requiretheusertoenterintoGamesmanUnieverymovetheymake,whichisacumbersomeapproachthatslowsdownthepaceofgameplay.
Attemptsatcrossingthebarrierbetweendigitalandphysicalhavebeenmadeinafewinstances.Forexample,inFall2024,aprojecttodisplayvaluemovesforConnectFourwasattemptedusingcolordetection.Althoughthismethodwassuccessful,itwasnotgeneralizabletoothergames,asitworkedbydetectingtheaveragecolor(redoryellow)ineachConnect
Fourboardspace.Additionally,thissystemonlyworkedonvideorecordings,notonlivevideo.
9
Theobjectiveofcreatingasystemthatwouldallowmanygamestobeplayedinrealliferemained.
Asidefromthegoalofcrossingintothephysicaldomainandgeneralitytomanygames,athirdgoalwasaccessibility.AnotherkeyideaofGamesCraftersisthatgamesshouldbe
enjoyedbyeveryone.GamesPlane,then,aimstobeaseasytouseaspossiblefornewusers.Thissuggeststheinclusionofone-clickinterfaces,easysetup,andexhaustivedocumentation.Together,usabilityfeaturessuchasthesecontributetotheongoinguseanddevelopmentofthe
software,bothbycasualandtechnicalusers.
10
Chapter3:RelatedWork
Theconceptofasystemthatconvertsvideoofboardgamesintodigitalboardstatesisinitselfnotnovel.Multiplepapershavebeenauthoredonthetopic,generallyfocusingon
implementationsforpopularboardgameslikeChessorGo.GamesPlane’simplementation
provesitselfuniquethroughitsabilitytobegeneralizedtomanyboardgames,rapidresponsetime,andvaluemovedisplays.
3.1:Makingrealgamesvirtual:Trackingboardgamepieces[1]
ThisstudentprojectfromUSCSmakesuseofRANSACandHiddenMarkovModelstofindthegridofaGoboard,andthendeterminethecolorsofpiecesonthejunctionsbetween
spaces.ThesystemisfunctionalonstandardunmarkedGostones,evenatoff-angles,andis
abletodetecttheentire19x19Goboard.Ithasgooddetectionaccuracyatabout91%.Its
accuracyisboostedusinganA*algorithmthatusespreviouslyknownboardstatestopredict
thelikelihoodofdetectedboardstates:ifastateisdetectedbutismanymovesawayfromtheinitialstate,itisdeemedlesslikelyandasimplerexplanationisused.Themaindrawbackof
thissystemisitstimetooperate,taking40secondstorun20iterationsofanA*algorithmperpicture.Italsodoesnothaveanyreal-timeboardoverlay,insteadonlyfocusingonrecordingthegameovertime.
3.2:AugmentedRealityChessAnalyzer(ARChessAnalyzer)[2]
ARChessAnalyzermakesuseofaConvolutionalNeuralNetwork(CNN)approach
alongsideanARoverlaytoshowrecommendedmovesoverlaidonimagesofchessboards.
TheirCNNapproachenablesthemtouseexisting,unmodifiedchessboardsandpieces.Theytouta93.45%accuracyinstaterecognition,whichisexcellentconsideringthatupto32piecesmustberecognizedandpositionedcorrectlyforaboardstatetobecorrect.Whencomparedwithsomeoftheotherrelatedworks,thisaccuracyisespeciallyimpressive.However,the
complexcalculationsinvolvedinrunningaCNNresultsina3-4.5secondwaitingperiod
betweentakingapictureofthegameandseeinganARoverlay.Consideringthataugmentedrealityreliesonrealisticallysuperimposingthedigitalworldovertherealworld,thisdelay
becomesanotabledrawbackasitbreakstheappearanceofthedigitalobjectsappearing“inreallife.”
3.3:AnIntelligentChessPieceDetectionTool[3]
ThispaperusesCNNstolocateandcategorizechesspieces,withthegoalofcreatingaboardstate.Thepaperfocusesprimarilyonthemethoditusestocategorizepieces:aYOLO
objectdetectionalgorithm.YOLOmeans“YouOnlyLookOnce,”andreferstoanalgorithmthatrunstheimagethroughitsnetworkasingletime.BeforeYOLO,approachessuchasR-CNN
wereusedwhichwouldoftenneedtopropagateasingleimagethroughanetworkthousandsoftimes.WithYOLO,fasterorreal-timeobjectdetectionbecomespossible.Foundchesspiecesaredisplayedonaseparatechessboardtothesideoftheimageofthegameboard.Ithas
acceptableaccuracyper-pieceat84.29percentcorrectinthebestcase,however,fullboardstatedetectioncanbeerroneousconsideringupto32piecescanbeonachessboardatonce.ItrequirestheuseofacustomCNN,whichtakesbetween2and12hourstotrainand3to21secondstorun.Consideringthatitalsorequiresamassivedataset(about140,000picturesinthecaseofchess)totrain,itbecomesveryinefficienttoconvertthisCNN-basedapproachtoothergames.
11
3.4:Chessboardandchesspiecerecognitionwiththesupportofneuralnetworks[4]
ThispaperfromtheInstituteofComputingScienceatPoznanUniversityofTechnologyusesanovellatticedetectortofindachessboardinanimage,andthenasupportvector
machineandaconvolutionalneuralnetworktolocatethepieces.Theymakeuseofachess
enginetodeterminewhatboardpositionsaremostlikelytoincreaseaccuracy(e.g.havingthreewhitebishopsisveryuncommon).Withthisapproach,theyachieveanastounding99.57%
accuracyinchessboarddetectionand95%accuracyinpiecedetection.Drawbacksoftheirapproachincludethefactthatitdoesnottransferwelltoothergames,requirealattice-shapedboard,anditsexecutiontime,whichsometimesreaches4.5secondsforasingleframe.
3.5:ChessPieceDetection[5]
ThisapproachusesaYOLOCNNtodetectthespacesofachessboardaswellasthepiecesonit.Generally,itsapproachissplitintothreesteps:a“boarddetection”stepwheretheedgesoftheboardarelocated,a“griddetection”stepwherethespacesoftheboardare
delineated,anda“chesspiecedetection”stepwhereindividualpiecesineachspaceare
recognized.Itleveragesthefactthatchessboardshavealternatinglightanddarkcolorsto
detectavarietyofboardsusingOpenCV.AswiththeotherCNNapproaches,themajor
drawbackinthiscaseisthatitreliesonaspecificallytrainedCNNdesignedforchesspieces,
andsoconversiontoothergamesisacostlyaffair.Additionally,itsuseofcontourtracingmeanstheapproachcanonlypracticallyfunctiononchessboardsorothersquareboards/
3.6:ComparisontoGamesPlane
Consideringpreviousworkinthefieldofgameboardrecognitionandmovedisplay,GamesPlanedifferentiatesitselfinafewcriticalways.
Generality:GamesPlanecanfunctionwithpracticallyanygame,notjustChessand/orGo.EvengamesthatarenotcompatiblewithGamesmancanstillhavetheirboardstates
extracted.Critically,thisappliesevenforgameswithirregularboards:anyboardshape(e.g.hexagonal,triangular,orcompletelyirregular)canfunctionwithGamesPlane.Pieceswithflattops(likecheckers,disks,ortiles)workbestwithGamesPlane,butothershapescanworkaswellaslongasArUcosareflatwhenattached.
Accuracy:ThankstoitsArUco-basedapproach,GamesPlanehasexcellentaccuracyatavarietyofangles,whileothersystemstendtofocusonfunctioningatonespecificangle.Withthecamerapositionedfromthetopdown,itsrecognitionaccuracyisessentiallyperfect.
Accuracyisextremelyimportantinthecaseofstrategygames,asevenasinglemisplacedpiececancompletelyalterwhatthebestmoveis.
Speed:GamesPlanerunsatahighframerate,around25framespersecond.
Additionally,thereisnovisibledelaybetweenreallifeandthevideodisplay,evenonthe
low-endlaptopusedfortestingtheproject.Ahigher-endcomputercouldhypotheticallyachieveevenhigherframespersecond.ItonlyhastoqueryGamesmanUnioncetodisplayARvaluemoves,however,sothisisstillgenerallyfasterthantheCNN-basedapproaches.Additionally,GamesPlanecancacheitsoverlays,leadingtoinstantresponsetimes.
AROverlay:ByusingGamesmanUni’soverlays,GamesPlanegainsaccesstothe
interfaceofeverygameimplementedinGamesmanUniwithoutneedingtowriteadditional
interfacecode.Thatis,wedon’thavetore-drawtheinterface’sarrowsforslidingmovesanddotsforplacementmoves.Weinsteadusethegraphicdrawnbytheexistingsystemand
overlaythat,leveragingabstractionanda“don’trepeatyourself”softwarephilosophy.
Additionally,becauseGamesmansolvesgamesfully,ouroverlayshowsperfectvaluemoves,notalgorithmicorAIsuggestions.
12
AdownsideofoursystemisthattheusermustprepareaGamesPlaneboardwithArUcomarkers.However,withapre-madePDFreadytoprint,eventhisprocesstakesnomorethanafewminutespergame.ExistinggameboardscanalsobeconvertedtoGamesPlane
compatibilitybyaddingArUcoanchormarkers.GamesPlanethereforemakesaworthwhiletradeoffthatresultsinavarietyofbenefitsvaluabletoboardgameplayers.
13
3.7:SystemComparisonChart
System
ApplicableGames
State
RecognitionAccuracy
OperationSpeed
ValueMovesDisplay
Underlying
Technology
Makingreal
gamesvirtual:
Trackingboardgamepieces
Go
90.57%
40seconds
perframe
None
RANSAC,MarkovModels,A*
Augmented
RealityChess
Analyzer
(ARChessAnalyzer)
Chess
93.45%
4.5secondsperframe
Displayschessenginemoves
ConvolutionalNeuralNetwork
AnIntelligent
ChessPiece
DetectionTool
Chess
84.29%perpiece
3-4secondsperframe
Separateboarddisplay
ConvolutionalNeuralNetwork
Chessboardandchesspiece
recognitionwiththesupportofneuralnetworks
Chess
95%
4.57secondsperframe
Nodisplay;onlylocatespieces.
SupportVector
Machine,
ConvolutionalNeuralNetwork
Chesspiecedetection
Chess
81%
Real-Time
Nodisplay;onlylocatespieces.
ConvolutionalNeuralNetwork
GamesPlane
Any
Gamesman
Game
97-100%
Real-Time
Displaysvaluemovesin
augmentedreality
ArUcowithOpenCV,Gamesman
14
Chapter4:DevelopmentandChallenges
4.1:ConceptualizationofGamesPlane
Whencreatingtheinitialconceptforthisproject,IknewIwouldneedaboardthatwouldprovidesomekindofvisualanchorthatacameracoulddetect.I’dseenAprilTags[11]fromrobotics
applicationsbefore,andsodecidedtouseArUcotagsasthey’reintegratedintoOpenCV[12].PythonisalanguagealreadywidelyusedforvariousapplicationsinGamesCrafters,sousingPythonwithOpenCVwasanaturalapproachasitwouldensurefutureGamesCrafters
memberswouldbeabletoreadthecode.
4.2:FirstIteration
GamesPlaneitselfbeganasasingleobject,called“TheGamesPlane.”Thiswasawooden
board,aboutafoottoaside,featuringa5-by-5gridwith2-inchwidesquares(seeFigure4.1).ItiscompatiblewithgamessuchasTic-Tac-Toe,4x4Othello,Chung-Toi,orabout10others
supportedbyGamesman.Theboardhadspecialslotsinwhich5ArUcomarkerscouldbeplaced.IassumedthattheArUcotrackingwouldbeveryerroneous,andthathavingmoremarkerswouldessentiallyallowformultiplesamples.
Figure4.1.TheoriginalGamesPlane:Awoodenboard,intendedtobetheonlyboard
compatiblewiththesystem.
Forthepieces,I3D-printedcustompieces.AsseeninFigure4.2,thesewerestyledintheshapeofarook,butshorter.MythoughtprocesswasthathavingtallpieceswouldobscuretheArUcomarkerspastedontotheboardwhenviewedfromanangle,soshorterpieceswerepreferable.Atthetime,IwasunsureifIwouldbeplacingArUcomarkersontothepiecesorifIwouldbeusingsomekindofimagedetection,andsoIkeptthetopsflattoallowspaceforanArUcomarkertobeattached.Iadditionallyaddedridgesontotheedgeinthehopethatitwouldmakethepiece’sshapemoredefined,makingiteasiertodetectwithanyimagedetection
methodImightuse.
15
Figure4.2TheoriginalGamesPlanepiece,meantforusewithHaarCascades[6]asexplained
below.Itwasmeanttoevoketheshapeofachessrook.
ThefirstpipelineIenvisionedfortheGamesPlanewasasfollows:theArUcomarkers
wouldhavehardcodedreal-lifepositions.Iwouldthenuseanobjectdetectionmethodcalled
HaarCascades[6]tolocatethepiecesintheframe,andusetheirpositionsintheframe
comparedtothatoftheArUcostoestimatetheirreal-worldposition.ThereasonforthisdecisionwasthatIwantedthegamepiecestolooklikenormalgamepieces—Ithoughtthatadding
ArUcomarkersontopofthemwouldmakethemlooktoodifferentfromtraditionalboardgamepieces.
4.3:TransitiontoArUco-OnlyApproach
Unfortunately,thisinitialapproachworkedverypoorly.ThemainissuewaswiththeHaar
Cascades.Inordertodetectanewobject,it’snecessarytotrainanewcascadeusingimagescontainingtheobject(positiveexamples)andimagesnotcontainingtheobject(negative
examples).Ithereforetookabout250picturesofthepiecearoundmyapartment,andused
imagesfromtheinternetasnegativeexamples.Thisfailedtoadequatelytrainthecascade:itendedupwithafalse-positiverateofabout70%onimagesnotcontainingthepiece.TheissuewasdowntothevarietyofimagesIfedin.Bytakingmanysimilarpictures,Iinadvertently
trainedthecascadetodetectafewmuchsimplerfeatures:specifically,ashadowthatappearedontheedgeofmytableandanothershadowthatappearedalongsidethewall(seeFigure4.3).Withhowmanysituationscreateshadowssimilartothese,itwouldregularlyfindthepiecein
locationsitwasnot.Atthispoint,thetwowaysforwardwereeithertotakemuchmorevariedpicturesofthepieceinmanycontextsortosimplychangetoanall-ArUcoapproach.
Consideringthescopeoftheproject,itseemedmoresensibletoswitchtorelyingonArUcosentirely.
16
Figure4.3.TheHaar-basedapproachhadverylowaccuracy,andwouldusuallydetecta
randomcrackinthetable.ThegreensquareiswheretheHaarclassifierthinksthepieceis—
it’sactuallyinmyhand.
IbeganbyattachingArUcomarkerstothetopofthe3Dprintedpieces.However,therewasanissuehereaswell—ArUcomarkersneedwhitespacearoundtheiredges.When
detectingamarker,contrastbetweenwhiteandblackisused,andsoifthemarkerdoesnot
haveawhiteborderitfailstodetectit.Thetopsofthepiecesweretoosmall,soplacinga
markerwithaborderontopofthemmadethemarkersinvisibletothecamerafromevenashortdistance.Torectifythis,IstoppedusingthepiecesandstartedusingtheArUcomarkersontheirownwithnopiecesupportingthem—thisway,atleastwhiletesting,theywouldbelargerandmorevisible.
Atthispoint,withasolelyArUco-basedapproach,IwentaboutimplementingOpenCV’sArUcodetection.Thechallengeitpresentedwasoneofcoordinatespaces.MyfinalgoalwastoextractwhatIcall“boardcoordinates”:whereagamepieceisonaboard(e.g.f4inchess).Togetthesecoordinates,I’dneedtofirstobtainboard-centeredworldcoordinates,whichare(x,y,z)coordinatesforwhereagamepieceisinspacealignedtothegameboard’sframeof
reference.Thesewouldthencomefromcamera-centeredworldcoordinates,whichcanbe
obtainedbyestimatingtherelativepositionandposeofanArUcomarkertoacamerabyusinganimagethecamerahastaken.Convertingbetweenthesefourcoordinatespaces,and
displayinginformationfromeachinasensibleway,madeupmuchoftheworkoftheproject.Smallmathematicalerrorsweredifficulttodetectbuthadamassiveeffectontheaccuracyofpiecelocation.
Afterresolvingtheseconversions,Ifinallywasabletolocateapiece,butinaccurately.
Thedetectionwouldregularlyplaceapieceseveralspacesawayfromitstruelocation.In
strategygameswhereasinglespacecanmakeamassivedifferenceinthebestmove,thiswasexpectedlyunacceptable.Thebreakthroughinraisingaccuracycamewhendiscussingthe
camera’scalibrationfile.Acalibrationfilecontainstheinformationaboutacamera’sintrinsic
properties,specificallyitsoutputimagesizeandfocallength.Analyzingthefilerevealedthatthecamerahadbeencalibratedverypoorly,possiblyduetoanissueintheGitHubrepositoryIusedto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新解讀《CB-T 3859 - 1999錨鏈產品質量評級》新解讀
- DBJ04-T489-2025 《智慧園林建設標準》
- 三級安全教育考試題
- AI技術服務合同
- 浙江省杭州市上城區2023-2024學年四年級下學期數學期末試卷(含答案)
- Brand KPIs for health insurance:State Farm in the United States-英文培訓課件2025.4
- 初中英語八年級下冊統編教案 uunit1
- 初中英語七年級下冊統編教案 七下Unit6 Outdoor fun第3課時
- 從加強支部活動方案
- 倉儲超市開業活動方案
- 2024年湖南省普通高中學業水平考試數學試卷及答案
- 0-3歲兒童中醫健康管理課件
- 蘇少版四年級美術全冊知識點歸納
- 程序的循環結構課件高中信息技術必修計算與數據
- 地鐵線反恐安全培訓內容
- 廣東華泰紙業有限公司紗管原紙工藝設備技改項目環境影響報告書
- 紅皮病護理的課件
- SH-T-3503-2017-附錄A-交工技術文件通用表
- 完整CECAGC3-2010建設項目工程結算編審規程完整
- 招標文件技術規范書
- 初中音樂-第五單元環球之旅(二)歐洲與大洋洲教學設計學情分析教材分析課后反思
評論
0/150
提交評論