2024屆黑龍江省佳木斯市向陽區(qū)第五中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
2024屆黑龍江省佳木斯市向陽區(qū)第五中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
2024屆黑龍江省佳木斯市向陽區(qū)第五中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
2024屆黑龍江省佳木斯市向陽區(qū)第五中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
2024屆黑龍江省佳木斯市向陽區(qū)第五中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆黑龍江省佳木斯市向陽區(qū)第五中學(xué)中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.不等式組的整數(shù)解有()A.0個(gè) B.5個(gè) C.6個(gè) D.無數(shù)個(gè)2.某校航模小分隊(duì)年齡情況如表所示,則這12名隊(duì)員年齡的眾數(shù)、中位數(shù)分別是()年齡(歲)1213141516人數(shù)12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲3.下列二次根式中,為最簡(jiǎn)二次根式的是()A. B. C. D.4.如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點(diǎn),則K的值不可能是()A.-5 B.-2 C.3 D.55.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點(diǎn),若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<06.“保護(hù)水資源,節(jié)約用水”應(yīng)成為每個(gè)公民的自覺行為.下表是某個(gè)小區(qū)隨機(jī)抽查到的10戶家庭的月用水情況,則下列關(guān)于這10戶家庭的月用水量說法錯(cuò)誤的是()月用水量(噸)4569戶數(shù)(戶)3421A.中位數(shù)是5噸 B.眾數(shù)是5噸 C.極差是3噸 D.平均數(shù)是5.3噸7.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計(jì)),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設(shè)矩形面積是xm2,三角形面積是ym2,則根據(jù)題意,可列出二元一次方程組為()A. B. C. D.8.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點(diǎn),連接DF,F(xiàn)E,則四邊形DBEF的周長(zhǎng)是(

)A.5 B.7 C.9 D.119.某運(yùn)動(dòng)會(huì)頒獎(jiǎng)臺(tái)如圖所示,它的主視圖是()A. B. C. D.10.下列圖形中,線段MN的長(zhǎng)度表示點(diǎn)M到直線l的距離的是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.12.計(jì)算:______.13.關(guān)于x的方程ax=x+2(a1)的解是________.14.菱形ABCD中,,其周長(zhǎng)為32,則菱形面積為____________.15.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點(diǎn)O,連接OC,若BC=3,AC=4,則tan∠OCB=_____16.如圖,在四邊形ABCD中,AC、BD是對(duì)角線,AC=AD,BC>AB,AB∥CD,AB=4,BD=213,tan∠BAC=33,則線段BC的長(zhǎng)是_____.三、解答題(共8題,共72分)17.(8分)作圖題:在∠ABC內(nèi)找一點(diǎn)P,使它到∠ABC的兩邊的距離相等,并且到點(diǎn)A、C的距離也相等.(寫出作法,保留作圖痕跡)18.(8分)如圖,在Rt△ABC中,∠C=90°,AB的垂直平分線交AC于點(diǎn)D,交AB于點(diǎn)E.(1)求證:△ADE~△ABC;(2)當(dāng)AC=8,BC=6時(shí),求DE的長(zhǎng).19.(8分)已知二次函數(shù)y=x2-4x-5,與y軸的交點(diǎn)為P,與x軸交于A、B兩點(diǎn).(點(diǎn)B在點(diǎn)A的右側(cè))(1)當(dāng)y=0時(shí),求x的值.(2)點(diǎn)M(6,m)在二次函數(shù)y=x2-4x-5的圖像上,設(shè)直線MP與x軸交于點(diǎn)C,求cot∠MCB的值.20.(8分)在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元,請(qǐng)你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.21.(8分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.22.(10分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng),已知點(diǎn)F的移動(dòng)速度是點(diǎn)E移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動(dòng)距離為x(0<x<6).(1)∠DCB=度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時(shí),x=;(2)在點(diǎn)E,F(xiàn)的移動(dòng)過程中,點(diǎn)G始終在BD或BD的延長(zhǎng)線上運(yùn)動(dòng),求點(diǎn)G在線段BD的中點(diǎn)時(shí)x的值;(3)當(dāng)2<x<6時(shí),求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),y有最大值?并求出y的最大值.23.(12分)某學(xué)校2017年在某商場(chǎng)購買甲、乙兩種不同足球,購買甲種足球共花費(fèi)2000元,購買乙種足球共花費(fèi)1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個(gè)乙種足球比購買一個(gè)甲種足球多花20元;(1)求購買一個(gè)甲種足球、一個(gè)乙種足球各需多少元;(2)2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個(gè).恰逢該商場(chǎng)對(duì)兩種足球的售價(jià)進(jìn)行調(diào)整,甲種足球售價(jià)比第一次購買時(shí)提高了10%,乙種足球售價(jià)比第一次購買時(shí)降低了10%.如果此次購買甲、乙兩種足球的總費(fèi)用不超過2910元,那么這所學(xué)校最多可購買多少個(gè)乙種足球?24.如圖,已知某水庫大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長(zhǎng)度.(1)壩底BC的長(zhǎng)度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

先解每一個(gè)不等式,求出不等式組的解集,再求整數(shù)解即可.【詳解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式組的解集為﹣3<x≤2,∴整數(shù)解有:﹣2,﹣1,0,1,2共5個(gè),故選B.【點(diǎn)睛】本題主要考查了不等式組的解法,并會(huì)根據(jù)未知數(shù)的范圍確定它所滿足的特殊條件的值.一般方法是先解不等式組,再根據(jù)解集求出特殊值.2、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè);找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù).【詳解】解:數(shù)據(jù)1出現(xiàn)了5次,最多,故為眾數(shù)為1;按大小排列第6和第7個(gè)數(shù)均是1,所以中位數(shù)是1.故選D.【點(diǎn)睛】本題主要考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對(duì)這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng).注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求.如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).3、B【解析】

最簡(jiǎn)二次根式必須滿足以下兩個(gè)條件:1.被開方數(shù)的因數(shù)是(整數(shù)),因式是(整式)(分母中不含根號(hào))2.被開方數(shù)中不含能開提盡方的(因數(shù))或(因式).【詳解】A.=3,不是最簡(jiǎn)二次根式;B.,最簡(jiǎn)二次根式;C.=,不是最簡(jiǎn)二次根式;D.=,不是最簡(jiǎn)二次根式.故選:B【點(diǎn)睛】本題考核知識(shí)點(diǎn):最簡(jiǎn)二次根式.解題關(guān)鍵點(diǎn):理解最簡(jiǎn)二次根式條件.4、B【解析】

當(dāng)直線y=kx-2與線段AB的交點(diǎn)為A點(diǎn)時(shí),把A(-2,4)代入y=kx-2,求出k=-3,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≤-3時(shí)直線y=kx-2與線段AB有交點(diǎn);當(dāng)直線y=kx-2與線段AB的交點(diǎn)為B點(diǎn)時(shí),把B(4,2)代入y=kx-2,求出k=1,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≥1時(shí)直線y=kx-2與線段AB有交點(diǎn),從而能得到正確選項(xiàng).【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當(dāng)直線y=kx-2與線段AB有交點(diǎn),且過第二、四象限時(shí),k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當(dāng)直線y=kx-2與線段AB有交點(diǎn),且過第一、三象限時(shí),k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點(diǎn),則k的值不可能是-2.故選B.【點(diǎn)睛】本題考查了一次函數(shù)y=kx+b(k≠0)的性質(zhì):當(dāng)k>0時(shí),圖象必過第一、三象限,k越大直線越靠近y軸;當(dāng)k<0時(shí),圖象必過第二、四象限,k越小直線越靠近y軸.5、B【解析】由已知拋物線求出對(duì)稱軸,解:拋物線:,對(duì)稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.6、C【解析】

根據(jù)中位數(shù)、眾數(shù)、極差和平均數(shù)的概念,對(duì)選項(xiàng)一一分析,即可選擇正確答案.【詳解】解:A、中位數(shù)=(5+5)÷2=5(噸),正確,故選項(xiàng)錯(cuò)誤;B、數(shù)據(jù)5噸出現(xiàn)4次,次數(shù)最多,所以5噸是眾數(shù),正確,故選項(xiàng)錯(cuò)誤;C、極差為9﹣4=5(噸),錯(cuò)誤,故選項(xiàng)正確;D、平均數(shù)=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】此題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差的概念.要掌握這些基本概念才能熟練解題.7、A【解析】

根據(jù)題意找到等量關(guān)系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據(jù)此列出方程組.【詳解】依題意得:.故選A.【點(diǎn)睛】考查了由實(shí)際問題抽象出二元一次方程組.根據(jù)實(shí)際問題中的條件列方程組時(shí),要注意抓住題目中的一些關(guān)鍵性詞語,找出等量關(guān)系,列出方程組.8、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點(diǎn),∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長(zhǎng)=2(DF+EF)=2×(2+)=1.故選B.9、C【解析】

從正面看到的圖形如圖所示:,故選C.10、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長(zhǎng)度不能表示點(diǎn)M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點(diǎn)N,故線段MN的長(zhǎng)度能表示點(diǎn)M到直線l的距離.故選A.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】

過點(diǎn)O作OM⊥EF于點(diǎn)M,反向延長(zhǎng)OM交BC于點(diǎn)N,連接OF,設(shè)OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長(zhǎng)即可.【詳解】過點(diǎn)O作OM⊥EF于點(diǎn)M,反向延長(zhǎng)OM交BC于點(diǎn)N,連接OF,設(shè)OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.12、【解析】原式==.故答案為:.13、【解析】分析:依據(jù)等式的基本性質(zhì)依次移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1即可得出答案.詳解:移項(xiàng),得:ax﹣x=1,合并同類項(xiàng),得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程兩邊都除以a﹣1,得:x=.故答案為x=.點(diǎn)睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質(zhì)及解一元一次方程的基本步驟是解題的關(guān)鍵.14、【解析】分析:根據(jù)菱形的性質(zhì)易得AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,再判定△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據(jù)勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.詳解:∵菱形ABCD中,其周長(zhǎng)為32,∴AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,∵,∴△ABD為等邊三角形,∴AB=BD=8,∴OB=4,在Rt△AOB中,OB=4,AB=8,根據(jù)勾股定理可得OA=4,∴AC=2AO=,∴菱形ABCD的面積為:=.點(diǎn)睛:本題考查了菱形性質(zhì):1.菱形的四個(gè)邊都相等;2.菱形對(duì)角線相互垂直平分,并且每一組對(duì)角線平分一組對(duì)角;3.菱形面積公式=對(duì)角線乘積的一半.15、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點(diǎn)睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.16、6【解析】

作DE⊥AB,交BA的延長(zhǎng)線于E,作CF⊥AB,可得DE=CF,且AC=AD,可證Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根據(jù)tan∠BAC=∠DAE=DEAE=33【詳解】如圖:作DE⊥AB,交BA的延長(zhǎng)線于E,作CF⊥AB,∵AB∥CD,DE⊥AB⊥,CF⊥AB∴CF=DE,且AC=AD∴Rt△ADE≌Rt△AFC∴AE=AF,∠DAE=∠BAC∵tan∠BAC=33∴tan∠DAE=33∴設(shè)AE=a,DE=33a在Rt△BDE中,BD2=DE2+BE2∴52=(4+a)2+27a2解得a1=1,a2=-97∴AE=1=AF,DE=33=CF∴BF=AB-AF=3在Rt△BFC中,BC=BF2【點(diǎn)睛】本題是解直角三角形問題,恰當(dāng)?shù)貥?gòu)建輔助線是本題的關(guān)鍵,利用三角形全等證明邊相等,并借助同角的三角函數(shù)值求線段的長(zhǎng),與勾股定理相結(jié)合,依次求出各邊的長(zhǎng)即可.三、解答題(共8題,共72分)17、見解析【解析】

先作出∠ABC的角平分線,再連接AC,作出AC的垂直平分線,兩條平分線的交點(diǎn)即為所求點(diǎn).【詳解】①以B為圓心,以任意長(zhǎng)為半徑畫弧,分別交BC、AB于D、E兩點(diǎn);②分別以D、E為圓心,以大于DE為半徑畫圓,兩圓相交于F點(diǎn);③連接AF,則直線AF即為∠ABC的角平分線;⑤連接AC,分別以A、C為圓心,以大于AC為半徑畫圓,兩圓相交于F、H兩點(diǎn);⑥連接FH交BF于點(diǎn)M,則M點(diǎn)即為所求.【點(diǎn)睛】本題考查的是角平分線及線段垂直平分線的作法,熟練掌握是解題的關(guān)鍵.18、(1)見解析;(2).【解析】

(1)根據(jù)兩角對(duì)應(yīng)相等,兩三角形相似即可判定;(2)利用相似三角形的性質(zhì)即可解決問題.【詳解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△ACB,∴,∴,∴DE.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì)、勾股定理、線段的垂直平分線的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考常考題型.19、(1),;(2)【解析】

(1)當(dāng)y=0,則x2-4x-5=0,解方程即可得到x的值.(2)由題意易求M,P點(diǎn)坐標(biāo),再求出MP的直線方程,可得cot∠MCB.【詳解】(1)把代入函數(shù)解析式得,即,解得:,.(2)把代入得,即得,∵二次函數(shù),與軸的交點(diǎn)為,∴點(diǎn)坐標(biāo)為.設(shè)直線的解析式為,代入,得解得,∴,∴點(diǎn)坐標(biāo)為,在中,又∵∴.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是拋物線與x軸的交點(diǎn),二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練的掌握拋物線與x軸的交點(diǎn),二次函數(shù)的性質(zhì).20、(1)每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元(2)見解析【解析】解:(1)設(shè)每臺(tái)電腦x萬元,每臺(tái)電子白板y萬元,根據(jù)題意得:,解得:。答:每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元。(2)設(shè)需購進(jìn)電腦a臺(tái),則購進(jìn)電子白板(30-a)臺(tái),則,解得:,即a=15,16,17。故共有三種方案:方案一:購進(jìn)電腦15臺(tái),電子白板15臺(tái).總費(fèi)用為萬元;方案二:購進(jìn)電腦16臺(tái),電子白板14臺(tái).總費(fèi)用為萬元;方案三:購進(jìn)電腦17臺(tái),電子白板13臺(tái).總費(fèi)用為萬元。∴方案三費(fèi)用最低。(1)設(shè)電腦、電子白板的價(jià)格分別為x,y元,根據(jù)等量關(guān)系:“1臺(tái)電腦+2臺(tái)電子白板=3.5萬元”,“2臺(tái)電腦+1臺(tái)電子白板=2.5萬元”,列方程組求解即可。(2)設(shè)計(jì)方案題一般是根據(jù)題意列出不等式組,求不等式組的整數(shù)解。設(shè)購進(jìn)電腦x臺(tái),電子白板有(30-x)臺(tái),然后根據(jù)題目中的不等關(guān)系“總費(fèi)用不超過30萬元,但不低于28萬元”列不等式組解答。21、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.22、(1)30;2;(2)x=1;(3)當(dāng)x=時(shí),y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當(dāng)?shù)冗吶切巍鱁GF的高=時(shí),點(diǎn)G在AD上,此時(shí)x=2;(2)根據(jù)勾股定理求出的長(zhǎng)度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點(diǎn)的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;

(3)圖2,圖3三種情形解決問題.①當(dāng)2<x<3時(shí),如圖2中,點(diǎn)E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當(dāng)3≤x<6時(shí),如圖3中,點(diǎn)E在線段BC上,點(diǎn)F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當(dāng)?shù)冗吶切巍鱁GF的高等于時(shí),點(diǎn)G在AD上,此時(shí)x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點(diǎn)∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當(dāng)2<x<3,如圖2點(diǎn)E、點(diǎn)F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論