上海市奉賢區(qū)市級名校2024-2025學年高二下數(shù)學期末達標測試試題含解析_第1頁
上海市奉賢區(qū)市級名校2024-2025學年高二下數(shù)學期末達標測試試題含解析_第2頁
上海市奉賢區(qū)市級名校2024-2025學年高二下數(shù)學期末達標測試試題含解析_第3頁
上海市奉賢區(qū)市級名校2024-2025學年高二下數(shù)學期末達標測試試題含解析_第4頁
上海市奉賢區(qū)市級名校2024-2025學年高二下數(shù)學期末達標測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市奉賢區(qū)市級名校2024-2025學年高二下數(shù)學期末達標測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)滿足約束條件,則的最大值是()A.-3 B.2 C.4 D.62.如圖,用6種不同的顏色把圖中四塊區(qū)域分開,若相鄰區(qū)域不能涂同一種顏色,則不同的涂法共有()A.496種 B.480種 C.460種 D.400種3.將函數(shù)的圖像向右平移個單位長度,再把圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)的最大值為 B.函數(shù)的最小正周期為C.函數(shù)的圖象關(guān)于直線對稱 D.函數(shù)在區(qū)間上單調(diào)遞增4.點A、B在以PC為直徑的球O的表面上,且AB⊥BC,AB=2,BC=4,若球O的表面積是24π,則異面直線PB和AC所成角余弦值為()A.33 B.32 C.105.在一項調(diào)查中有兩個變量x(單位:千元)和y(單位:t),如圖是由這兩個變量近8年來的取值數(shù)據(jù)得到的散點圖,那么適宜作為y關(guān)于x的回歸方程類型的是()A.y=a+bx B.y=c+d C.y=m+nx2 D.y=p+qex(q>0)6.定積分121xdxA.-34 B.3 C.ln7.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是()A. B. C. D.8.以圓:的圓心為圓心,3為半徑的圓的方程為()A. B.C. D.9.通過隨機詢問名性別不同的小學生是否愛吃零食,得到如下的列聯(lián)表:男女總計愛好不愛好總計由算得參照附表,得到的正確結(jié)論()A.我們有以上的把握,認為“是否愛吃零食與性別有關(guān)”B.我們有以上的把握,認為“是否愛吃零食與性別無關(guān)”C.在犯錯誤的概率不超過的前提下,認為“是否愛吃零食與性別有關(guān)”D.在犯錯誤的概率不超過的前提下,認為“是否愛吃零食與性別無關(guān)”10.已知向量滿足,且,則的夾角為()A. B. C. D.11.設(shè)等比數(shù)列的前n項和為,公比,則()A. B. C. D.12.某幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖的上半部分均為半圓,下半部分為等腰直角三角形,則該幾何體的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,命題:,,命題:,,若命題為真命題,則實數(shù)的取值范圍是_____.14.某幾何體的一條棱長為,在該幾何體的正視圖中,這條棱的投影是長為的線段,在該幾何體的側(cè)視圖與俯視圖中,這條棱的投影分別是長為和的線段,則的最大值為.15.已知雙曲線的左、右焦點分別為、,是雙曲線上一點,且軸,若的內(nèi)切圓半徑為,則其漸近線方程是__________.16.已知復(fù)數(shù),則復(fù)數(shù)的實部和虛部之和為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四面體ABCD中,O、E分別是BD、BC的中點,(Ⅰ)求證:平面BCD;(Ⅱ)求點E到平面ACD的距離.18.(12分)在5道題中有3道理科題和2道文科題.如果不放回地依次抽取2道題,求:(l)第1次抽到理科題的概率;(2)第1次和第2次都抽到理科題的概率;(3)在第1次抽到理科題的條件下,第2次抽到理科題的概率.19.(12分)“蛟龍?zhí)枴陛d人潛水艇執(zhí)行某次任務(wù)時從海底帶回來某種生物.甲乙兩個生物小組分別獨立開展對該生物離開恒溫箱的成活情況的研究,每次試驗一個生物,甲組能使生物成活的概率為,乙組能使生物成活的概率為,假定試驗后生物成活,則稱該次試驗成功,如果生物不成活,則稱該次試驗失敗.(1)甲小組做了三次試驗,求至少兩次試驗成功的概率;(2)如果乙小組成功了4次才停止試驗,求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;(3)若甲乙兩小組各進行2次試驗,記試驗成功的總次數(shù)為隨機變量X,求X的概率分布與數(shù)學期望.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系.(1)求的極坐標方程;(2)設(shè)點,直線與曲線相交于點,求的值.21.(12分)某種農(nóng)作物可以生長在灘涂和鹽堿地,它的灌溉是將海水稀釋后進行灌溉.某實驗基地為了研究海水濃度對畝產(chǎn)量(噸)的影響,通過在試驗田的種植實驗,測得了該農(nóng)作物的畝產(chǎn)量與海水濃度的數(shù)據(jù)如下表:海水濃度畝產(chǎn)量(噸)殘差繪制散點圖發(fā)現(xiàn),可以用線性回歸模型擬合畝產(chǎn)量(噸)與海水濃度之間的相關(guān)關(guān)系,用最小二乘法計算得與之間的線性回歸方程為.(1)求的值;(2)統(tǒng)計學中常用相關(guān)指數(shù)來刻畫回歸效果,越大,回歸效果越好,如假設(shè),就說明預(yù)報變量的差異有是解釋變量引起的.請計算相關(guān)指數(shù)(精確到),并指出畝產(chǎn)量的變化多大程度上是由澆灌海水濃度引起的?(附:殘差,相關(guān)指數(shù),其中)22.(10分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先由約束條件畫出可行域,再利用線性規(guī)劃求解.【詳解】如圖即為,滿足約束條件的可行域,由,解得,由得,由圖易得:當經(jīng)過可行域的時,直線的縱截距最大,z取得最大值,所以的最大值為6,故選.本題主要考查線性規(guī)劃求最值,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.2、B【解析】分析:本題是一個分類計數(shù)問題,只用三種顏色涂色時,有C63C31C21,用四種顏色涂色時,有C64C41C31A22種結(jié)果,根據(jù)分類計數(shù)原理得到結(jié)果.詳解:由題意知本題是一個分類計數(shù)問題,只用三種顏色涂色時,有C63C31C21=120(種).用四種顏色涂色時,有C64C41C31A22=360(種).綜上得不同的涂法共有480種.故選:C.點睛:本題考查分類計數(shù)問題,本題解題的關(guān)鍵是看出給圖形涂色只有兩種不同的情況,顏色的選擇和顏色的排列比較簡單.3、D【解析】

根據(jù)平移變換和伸縮變換的原則可求得的解析式,依次判斷的最值、最小正周期、對稱軸和單調(diào)性,可求得正確結(jié)果.【詳解】函數(shù)向右平移個單位長度得:橫坐標伸長到原來的倍得:最大值為,可知錯誤;最小正周期為,可知錯誤;時,,則不是的對稱軸,可知錯誤;當時,,此時單調(diào)遞增,可知正確.本題正確選項:本題考查三角函數(shù)平移變換和伸縮變換、正弦型函數(shù)的單調(diào)性、對稱性、值域和最小正周期的求解問題,關(guān)鍵是能夠明確圖象變換的基本原則,同時采用整體對應(yīng)的方式來判斷正弦型函數(shù)的性質(zhì).4、C【解析】

首先作出圖形,計算出球的半徑,通過幾何圖形,找出異面直線PB和AC所成角,通過余弦定理即可得到答案.【詳解】設(shè)球O的半徑為R,則4πR2=24π,故R=6,如圖所示:分別取PA,PB,BC的中點M,N,E,連接MN,NE,ME,AE,易知,PA⊥平面ABC,由于AB⊥BC,所以AC=AB2+BC2=25,所以PA=PC2-AC2=2,因為E為BC的中點,則AE=AB2+BE2=2cos∠MNE=MN2+NE2-M本題主要考查外接球的相關(guān)計算,異面直線所成角的計算.意在考查學生的空間想象能力,計算能力和轉(zhuǎn)化能力,難度較大.5、B【解析】散點圖呈曲線,排除選項,且增長速度變慢,排除選項,故選.6、C【解析】

直接利用微積分基本定理求解即可.【詳解】由微積分基本定理可得,121x本題主要考查微積分基本定理的應(yīng)用,意在考查對基礎(chǔ)知識的掌握情況,屬于基礎(chǔ)題.7、B【解析】

解:根據(jù)題意,播下4粒種子恰有2粒發(fā)芽即4次獨立重復(fù)事件恰好發(fā)生2次,由n次獨立重復(fù)事件恰好發(fā)生k次的概率的公式可得,故選B.8、A【解析】

先求得圓M的圓心坐標,再根據(jù)半徑為3即可得圓的標準方程.【詳解】由題意可得圓M的圓心坐標為,以為圓心,以3為半徑的圓的方程為.故選:A.本題考查了圓的一般方程與標準方程轉(zhuǎn)化,圓的方程求法,屬于基礎(chǔ)題.9、A【解析】分析:對照臨界值表,由,從而可得結(jié)果.詳解:根據(jù)所給的數(shù)據(jù),,而,有以上的把握,認為“是否愛吃零食與性別有關(guān)”,故選A.點睛:本題主要考查獨立性檢驗的應(yīng)用,屬于中檔題.獨立性檢驗的一般步驟:(1)根據(jù)樣本數(shù)據(jù)制成列聯(lián)表;(2)根據(jù)公式計算的值;(3)查表比較與臨界值的大小關(guān)系,作統(tǒng)計判斷.10、C【解析】

設(shè)的夾角為,兩邊平方化簡即得解.【詳解】設(shè)的夾角為,兩邊平方,得,即,又,所以,則,所以.故選C本題主要考查平面向量的數(shù)量積的計算和向量夾角的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.11、D【解析】

由等比數(shù)列的通項公式與前項和公式分別表示出與,化簡即可得到的值【詳解】因為等比數(shù)列的公比,則,故選D.本題考查等比數(shù)列的通項公式與前項和公式,屬于基礎(chǔ)題。12、A【解析】

根據(jù)三視圖知:幾何體為半球和圓柱和圓錐的組合體,計算表面積得到答案.【詳解】根據(jù)三視圖知:幾何體為半球和圓柱和圓錐的組合體..故選:.本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】

根據(jù)不等式恒成立化簡命題為,根據(jù)一元二次方程有解化簡命題為或,再根據(jù)且命題的性質(zhì)可得結(jié)果.【詳解】若命題:“,”為真;則,解得:,若命題:“,”為真,則,解得:或,若命題“”是真命題,則,或,故答案為或解答非命題、且命題與或命題真假有關(guān)的題型時,應(yīng)注意:(1)原命題與其非命題真假相反;(2)或命題“一真則真”;(3)且命題“一假則假”.14、【解析】構(gòu)造如圖所示長方體,長方體的長、寬、高分別為,則,,,,所以。則(當且僅當,上式取等號)。15、【解析】分析:由題意可得A在雙曲線的右支上,由雙曲線的定義可得|AF1|﹣|AF2|=2a,設(shè)Rt△AF1F2內(nèi)切圓半徑為r,運用等積法和勾股定理,可得r=c﹣a,結(jié)合條件和漸近線方程,計算即可得到所求.詳解:由點A在雙曲線上,且AF2⊥x軸,可得A在雙曲線的右支上,由雙曲線的定義可得|AF1|﹣|AF2|=2a,設(shè)Rt△AF1F2內(nèi)切圓半徑為r,運用面積相等可得S=|AF2|?|F1F2|=r(|AF1|+|AF2|+|F1F2|),由勾股定理可得|AF2|2+|F1F2|2=|AF1|2,解得r=,,即∴漸近線方程是,故答案為:.點睛:本題主要考查雙曲線的定義及簡單的幾何性質(zhì)、數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,是中學數(shù)學四種重要的數(shù)學思想之一,尤其在解決選擇題、填空題是發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關(guān)鍵是將已知函數(shù)的性質(zhì)研究透,這樣才能快速找準突破點.充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.16、0【解析】

先化簡求得再計算實部和虛部的和即可.【詳解】,故實部和虛部之和為.故答案為:0本題主要考查復(fù)數(shù)的基本運算與實部虛部的概念,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析(Ⅱ)【解析】

試題分析:(Ⅰ)要證明平面BCD,需要證明,,證明時主要是利用已知條件中的線段長度滿足勾股定理和等腰三角形三線合一的性質(zhì)(Ⅱ)中由已知條件空間直角坐標系容易建立,因此可采用空間向量求解,以為坐標原點,以方向為軸,軸,軸正方向建立空間直角坐標系,求出平面的法向量和斜線的方向向量,代入公式計算試題解析:(Ⅰ)證明:為的中點,,,,,,又,,,均在平面內(nèi),平面(Ⅱ)方法一:以為坐標原點,以方向為軸,軸,軸正方向建立空間直角坐標系,則,設(shè)為平面的法向量,則,取,,則點到平面的距離為方法二:設(shè)點在上,且,連,為的中點,平面,平面,平面,平面平面,平面平面,且交線為過點作于點,則平面分別為的中點,則平面,平面,平面,點到平面的距離即,故點到平面的距離為考點:1.線面垂直的判定;2.點到面的距離18、(1)(2)(3)【解析】本題考查了有條件的概率的求法,做題時要認真分析,找到正確方法.(1)因為有5件是次品,第一次抽到理科試題,有3中可能,試題共有5件,(2)因為是不放回的從中依次抽取2件,所以第一次抽到理科題有5種可能,第二次抽到理科題有4種可能,第一次和第二次都抽到理科題有6種可能,總情況是先從5件中任抽一件,再從剩下的4件中任抽一件,所以有20種可能,再令兩者相除即可.(3)因為在第1次抽到理科題的條件下,第2次抽到文科題的概率為(1);……….5分(2);………5分(3).……….5分19、(1);(2);(3)分布列見解析,.【解析】

(1)分兩類計算:一類是恰有兩次成功,另一類是三次均成功;(2)乙小組第四次成功前共進行了6次試驗,三次成功三次失敗,恰有兩次連續(xù)失敗共有種情況;(3)列出隨機變量X的所有可能取值,并求得相應(yīng)的取值的概率即可得到分布列與期望.【詳解】(1)記至少兩次試驗成功為事件A,則,答:甲小組做三次試驗,至少兩次試驗成功的概率為.(2)由題意知,乙小組第四次成功前共進行了6次試驗,其中三次成功三次失敗,且恰有兩次連續(xù)失敗,共有種情況.記乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗為事件B,則,答:乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率為.(3)X的所有可能取值為0,1,2,3,4.,,,,,所以X的概率分布為:X01234P數(shù)學期望.本題考查獨立重復(fù)試驗的概率、離散型隨機變量的分布列、期望,考查學生的運算求解能力,是一道中檔題.20、(1);(2)4.【解析】

(1)直接利用參數(shù)方程直角坐標方程和極坐標方程之間的轉(zhuǎn)換求出結(jié)果.(2)利用直線的參數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論