




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Intelligentenergy
AblueprintforcreatingvaluethroughAI-driventransformation
KPMG.MaketheDifference.
KPMGInternational
/intelligent
energy
Firstphase
Secondphase
Thirdphase
Keyconsiderations
Ataglance
Introduction
Researchfindings
Buildingtheintelligent
energycompany
GuidingyourAI
transformation
AIinenergy:Currentstate
Foreword
Thepaceoftechnologicaladvancementis
nothingshortofextraordinary.Ifthisreporthadbeenwrittensixmonthsago,itsconclusions
mightalreadyfeeloutofdate.Sixmonthsfromnow,theymayevolveagain.That’stherealitywenowoperatein—aworldwhereinnovationisnotonlyconstantbutacceleratingandwheretechnologiesoncethoughtofasfuturistic,suchasquantumandagenticAI,arerapidlymovingintothestrategicplanninghorizonofthe
energysector.
Inthenearterm,theindustryleaderswespeakwithpointtoagenticAIasatransformativeforce.Althoughtraditionalautomationhasdeliveredincremental
benefits,itsprogressisincreasinglyconstrainedbytheneedforexperthumanintervention—expertisethatisbothscarceanddiminishing.
AgenticAIoffersabreakthrough.Thesesystemscan
autonomouslymanageentireworkflows,complementingthenuancedjudgmentofhumanexpertsandmaking
complexdecisionswithoutdirectoversight,providing
recoursetoahumanexpertifandwhenrequired.Thelevelofimpactseemsdramatic:Onecompany,IheardpresentatCOP29,sharedthatbydeployingAIagents,they
reduceda21-dayprocesstojust18minutes.
Forenergycompanies,thecostofinactionisrising
fast—thosewhodelayriskbeinglockedintooutdated
infrastructures,talentmodels,andoperatingassumptionsthatmaybeunfitforpurposebytheendofthedecade.
ScalingAIisaboutreimaginingtheenterpriseandmeetingtheenergytrilemmaheadon,embeddingintelligence
acrossthevaluechaintosecuresupply,decarbonizeandcontrolcosts.Thisreportprovidesguidancefornavigatingthatfuture.
ForAItotrulyscaleanddelivervalue,energy
companiesmustrethinknotjusttheir
technology,buttheirentireoperatingmodel.
ThosethatcanalignAIwithbusinessstrategy,integratedataandtechnologyandcreate
aworkforcereadytoembraceAI-powered
decision-makingwilllikelybetheonesthatleadinthenexteraofenergytransformation.99
AnishDe—GlobalHeadofEnergyKPMGInternational
Foreword
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|2
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|3
Contents
02Foreword
04Ataglance
05Introduction
08Researchfindings
10AIinenergy:Currentstate
14Buildingtheintelligentenergycompany
18Thefirstphase:EnablingAItopeople
25Thesecondphase:EmbeddingAIintheflowofwork
30
Thethirdphase:Evolvingyourenergyecosystem
32Keyconsiderations
Conclusion
36
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|4
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Ataglance
Firstphase
Secondphase
Thirdphase
Keyconsiderations
Ataglance
Introduction
Researchfindings
Buildingtheintelligent
energycompany
GuidingyourAI
transformation
AIinenergy:Currentstate
Foreword
EnergycompaniesarebeginningtoscaletheirAIpilots
56%
havebeenpilotingAIbutonly13percentoperateanAIcenterofexcellence
Thereareearlysuccesses
efficiency
improvements
79%
haveseen
60%
ROIsof
greaterthan
10percent
74%
Thereisatwinfocusonefficiencyandgrowth
Revenuegrowth
65%Efficiency
Thedualityofenergycreationand
environmentalimpactisakeyconsideration
63%
71%
struggletobalanceAIusewithsustainabilitygoals
viewsustainabilityasamore
importantstrategicgoalthanAI
Experimentationforbreakthroughsisacriticalinvestmentarea
92%
believethatorganizationsthatembraceAIwilldevelopacompetitiveedgeoverthosethatdonot
areinvestinginfuture-focused
projectswithouttheexpectationofimmediatereturns
96%
TheindustryispreparingforanAIfuture
haveinvestedinanautomateddatafabricorhybridcloud,crossplatform,dataintegration
operateanenterprise-widecloudorhybrid-cloudITinfrastructure
63%
64%
Therearesignificantchallengestoscalingapplications
58%
havedataissueswithinconsistentformatsimpactingdataquality
faceethicsand
regulatoryissues
38%
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|5
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Introduction
Firstphase
Secondphase
Thirdphase
Keyconsiderations
Ataglance
Introduction
Researchfindings
Buildingtheintelligent
energycompany
GuidingyourAI
transformation
AIinenergy:Currentstate
Foreword
AIinenergyisaboutmorethanjustadoptingnewtechnologies—it’sabouttransforminghowenergyisgenerated,distributed,and
intelligentlymanagedtomaximizeefficiency,minimizewaste,andresponddynamicallytoreal-timedemandandsystemconditions.
Forleadersintheenergyindustry,standingstillisno
longeranoption.Customers,regulatorsandpartnersalikeexpectup-to-date,intelligentsystemscapableofdeliveringaffordable,reliableandsustainableenergy.Thebusinessesoftodaywillnotlookthesameby2030—andthejourneyfromheretothererequiresflexibility,foresightandthe
couragetoactinuncertaintimes.
Tounderstandhowthesectorispreparing,KPMG
interviewedandsurveyedAIleadersacrosstheenergy
industry,including163seniorexecutivesfrommid-to
large-sizedenergycompaniesacrosseightcountries
(Australia,Canada,China,France,Germany,Japan,the
UnitedKingdomandtheUnitedStates).WhatemergedisapictureofthecurrentstateofAIadoptionintheenergysector;insightsintohoworganizationsareapproachingAIstrategy,investmentandimplementation;and“noregrets”actionscompaniescantaketopreparetheirorganization
forthefuture,includingadoptingacomposableoperatingarchitecturethatenablesagility.
Thisreportexplores:
?HowtodefineAI-drivenvaluecreationinenergy—
UnderstandinghowAIcanenhanceoperationalefficiency,improvegridstability,supportsustainabilitygoalsanddrivecommercialsuccess.
?HowAIcanaddresschallengesaroundregulatory
compliance,cybersecurityandcross-functionalintegration.
?ThecharacteristicsofAI-readyenergyorganizations—
Identifyingwhatdifferentiateshigh-performingcompaniesandthecriticalenablersofAIadoption,includingdata
infrastructure,workforcereadinessandgovernancemodels.
?AnAImaturitymodel—Aframeworktohelpenergyorganizationsprogressthroughthreekeystages:
?EnablingworkforcesandbuildingAIfoundations
?EmbeddingAIacrosstheenterprise
?Evolvingoperatingmodelsandecosystems
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|6
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Figure1:EnergymustovercomestrategicbarriersforAIadoption
PercentagewhosaytheirorganizationhasfacedthefollowingchallengeswhenintegratingAI
Poordataquality
EmployeeresistancetochangeandreluctancetouseAItools
Ethicalrisks
Lackofcommunicationandalignmentbetweendepartments
BudgetrestrictionsorlackofinvestmentTimeandresourceconstraintsInconsistentdataformats
Securityanddataprivacyconcerns
LackofAIskillsorexpertiseamongworkforceLegalorregulatoryconstraints
Dif?cultyinmeasuringreturnoninvestment(ROI)
Lackofleadershipcommunicationandalignment
Datasilos
Lackofleadershipsupportandunderstanding
WhatchallengeshasyourorganizationfacedwhenintegratingAI?(Maximum5)n=163
Source:Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation,KPMGInternational,2025
24%
23%
22%
22%21%
21%21%
20%
20%
20%
19%
18%
15%
11%
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|7
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Keyrecommendations
WealsodiscoveredthatcapturingvaluefromAIrequiresastrategic,enterprise-wideapproach.Ourresearchidentifiesfourkeyrecommendations.
DesignanAI-first
businessstrategyand
transformationroadmap
PivotingtoanAI-firstapproachhelps
ensurethatintelligentsystemsand
data-driveninsightsinformevery
decision,frominfrastructureinvestment
toworkforceplanning.It’snotabout
boltingAIontothebusiness—instead,
it’saboutrebuildingthebusinessaroundAI.AIshouldenhanceoperational
efficiency,predictivemaintenance,safetyandsustainabilitywhilealigningwith
long-termbusinessgoals.Aclearroadmapshoulddefinehigh-impactAIusecases,
balancingshort-termcostreductionswithlong-termvaluecreation,helpingensureAIinvestmentsgeneratemeasurable
businessandenvironmentalbenefits.
Buildtrustintothe
transformationroadmapfromtheoutset
Trustiscriticalinanindustrywhere
safety,reliabilityandcomplianceare
paramount.AIadoptionmustincludetransparentgovernanceframeworks,robustriskmanagementandregulatoryalignmentfromthestart.Energyfirmsshouldengageregulators,employeesandexternalstakeholderstoaddressconcernsaboutdatasecurity,
AI-drivendecision-makingandethicalconsiderations.Byembedding
explainability,accountabilityand
fairnessintoAImodels,companiescanbuildtheconfidenceneededtoscaleAIacrossoperations.
CreateasustainabletechnologyanddatainfrastructureforAI
andagenticadoption
Scalabletechnologyanddata
foundationsareessentialforunlockingAI’sfullpotentialinenergy.Companiesshouldinvestindatagovernance,
datafabrics,cloud-basedplatforms
andhybridITinfrastructurestoenableseamlessAIintegration.Standardizingdataacrossdistributedenergy
networks,sensor-drivenindustrialsitesandreal-timegridoperationsenablesAImodelsandautonomousagentstofunctioneffectively.EquallyimportantisminimizingtheAIenergyfootprint,balancinginnovationwithsustainabilitygoalsandregulatoryrequirements.
BuildaculturethatusesAItouplifthumanpotential
AIshouldaugment,ratherthanreplace,humanexpertise.OrganizationsshouldfosteraculturewhereAIempowers
engineers,technicians,gridoperatorsanddecision-makersbyenhancing
insights,automatingroutinetasksandimprovingsafety.Investingin
AIliteracyandethicstraininghelps
ensureemployeesarepreparedforanintelligentfuture.
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|8
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Research
findings
IntroducingAItechnologyisacostlyendeavor,requiringsignificantinvestmentinhardwareupgrades,softwareprocurement,datainfrastructuretransformationandtherecruitmentofspecializedtalent.Forlargeenterpriseslikeours,whilethesecostscanbegraduallyabsorbed,theystillrepresentasubstantialexpenditure.Therefore,weneedtobeprudent,findingthemostcost-effectivesolutionswithinalimitedbudget.99
ChiefInformationOfficer—China
Theenergysectorisundergoingaprofoundtransformation,shapedbyshiftingmarketdynamics,technologicaldisruption,regulatorypressuresandtheglobalpushforsustainability.
Whatwasonceanindustrybuiltontraditionalextractiveand
network-basedmodelsisnowevolvingintoaninterconnected,digitallyenabledecosystem.
Fromexperimentationtoscale
AIadoptioninenergyhasmovedbeyondpilotprojects,with56percentofcompaniesscalingAIinitiativesand44percentintegratingAIasa
corepartofoperations.Despitedifferencesbetweenregulatedandunregulatedentities(aswellasthespecificnuancesofindividual
sub-sectors),thechallengesandopportunitiesaroundAItendtobe
broadlyconsistent.Companiesacrosstheenergyvaluechainare
convergingoncommonAIusecasesinareaslikeoperationalefficiency,assetoptimization,safety,sustainabilityandpredictivemaintenance.
Costreductiontofundfuturedevelopments
Manyorganizationsarepursuingaggressivecost-outprogramsin
responsetofluctuatingdemand,geopoliticaluncertaintiesandincreasingsustainabilityrequirements.RespondentsviewAIasakeyenablerof
operationalstreamlining,with79percentofcompaniesalreadyreportingmeasurableefficiencyimprovementsand60percentseeingROIsgreaterthan10percent.TheseAI-drivencostreductionsarealsofacilitating
reinvestment,creatingaself-fundingAItransformationmodelwheresavingsareredirectedintofurtherdigitalinnovation.
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|9
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Third
operationalvaluestreams
phase
LetAKIeayusairkayionsoe
GuidingyourAI
trneroaligoyno
Theindustryisfocusedonthefuture
Ninety-twopercentoforganizationsareinvestinginfuture-focusedAIprojectswithouttheexpectationofimmediatereturns.Energycompaniesaremakingsubstantialinvestments,with76percentplanningtoincreaseAIspending—63percentbymorethan
10percent.ThebiggestgrowthareasincludeAI-drivenautomation,predictiveanalyticsandAI-enhanced
productandservicedevelopment,where80percentofcompaniesareembeddingAIintotheirofferings.
SignificantbarriersremaintoscalingAI
OrganizationalhurdlesarehinderingAI’sfull-scale
adoption.Industryrespondentsciteinsufficientdata
management,governance,investmentandprioritizationresultingindataqualityissues(58percent);regulatorycomplexities(38percent);andbudgetconstraints
(37percent)askeychallenges.Thereisalsoalackofconnectionandintegrationbetweenteamscharged
withimprovingdataandteamsdevelopingAI.Only
13percentofenergycompaniescurrentlyoperateanAICenterofExcellence,withAIleadershipfragmentedacrossIT(20percent)oracombinationofITand
businessfunctions(34percent).
Movingforward
ThenextphaseofAIinenergywillbeaboutturning
promiseintotangible,lastingimpact.CEOsandsenior
leadersinourresearchrecognizetheneedforchange,buttosucceed,thesectorshouldmovebeyondincrementaladoptionandfocusonscalingAIinwaysthatcutcosts,
improvereliabilityandsupportsustainability.
Emergingtrendsprovideaclearpathforward.The
companiesthatsucceedwilllikelybethosethat
streamlinetheiroperatingmodels,integrateAIacrossvaluechainsanddevelopthedataandtechnology
infrastructurenecessarytofuelAI-drivengrowth.
Weapproach[AI]withexcitement,but
alsowithalotofcaution.Wedon’twant
tohavethetoolprovideinputthat’sgoingtobereliedonbyouremployeesorour
regulatorswithouthavingameansof
validatingthedata.There’sstillahuman
involvedineveryaspectoftheoutputfromGenAIjusttoensureaccuracy.99
ChiefRiskOfficer—US
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|10
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
AIinenergy:
Currentstate
AIprojectswithintheenergysectorfallintotwocategories:
initiativeswherethereismeasurableROIandpassionprojectsdrivenbyindustryvalues.
Value:MaximizingefficiencyandROI
Value-ledinitiativesthataredesignedwithclear,quantifiableoutcomes
aredrivingAIadoptioninenergy,specificallyinareaswhereintelligent
toolsandtechnologiesreduceinefficienciesandoperationalcostswhilealsomitigatingrisksandimprovingcapabilitiesascompaniesgrapplewiththetrilemma.
ManyAI-drivenvalueinitiativesdelivertransformativeperformancegains,sometimesachievingsubstantialefficiencyimprovementsbyautomatingoreliminatingentireprocesses.Forexample,predictivemaintenancecananticipatefailuresinturbines,pipelinesandrefineries,reducingunplanneddowntimeandextendingassetlifecycles.Supplychainoptimizationhelpsensurebetterinventoryforecastinganddistribution,whileintelligent
demandmodelsfine-tunepowerconsumptionacrossfacilities,minimizingwasteandhelpingensureasteadysupplyofpower.
Intheshortterm,we’regoingtobenefitmostfromproductivitygains,sowe’llbeabletoreduceourdependenceon
managedserviceproviders.We’llbeabletodelivermorewithless,whichisimmediatevalueonthebalancesheet.Inthemediumterm,wewillseebenefitsaroundourassets,soreductioninassetfailures,increasedabilitytoplanandschedulemaintenance.AlsobeingabletosearchthroughmanualsfromfortyyearsagousingLLMsisfantasticandthat’sarealstepchangeintermsofhowyoucanmanagefortyyearsofagingassets.99
SeniorVicePresident,CorporateServicesandChiefRiskOfficer—US
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|11
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Passion:Drivingsafety,sustainabilityandpurpose
TheenergysectorisdeployingAIinpassionprojectsthatalignwithsafetyandsustainabilitygoals.Theseinitiativeshelpensureregulatorycompliance,reduceenvironmentalimpact,andupholdcorporateresponsibilitystandards—whilealsounlockingeconomicvaluethroughcost
savings,operationalefficiency,andimprovedriskmanagement.
Forexample,AI-drivensafetymonitoringistransformingriskmanagementandisalreadyprovingcriticalin
preventingindustrialaccidents,oilspillsandreducing
injuriesandmortality.Machinelearningalgorithms
continuouslyscanenvironmentalconditions,allowing
energycompaniestopreemptivelyaddresssafetyrisksbeforeincidentsoccur.Forexample,intelligentsystemsanalyzesensordatafromdrillingsites,powerplants
andrefineriestodetecthazardousgasleaks,structuralweaknessesorpotentialequipmentfailures.
AIisalsoagame-changerinenvironmentalmonitoring.Advancedsatelliteimageryandsensornetworkstrackemissions,detectwildlifedisturbancesnearminingsitesandflagillegalactivitiessuchasunauthorizeddrillingorpipelinetampering.
Workerwell-beinginitiativesareanotherareawhere
AIismakinganimpact.AI-poweredfatiguemonitoringsystemsusewearablesensors,biometrictrackingandreal-timevideoanalyticstodetectsignsofexhaustionorcognitivestrainamongfieldworkers.Thesesolutionshelppreventworkplaceinjuries,ensurecompliancewithlaborsafetystandardsandimproveoverallworkforce
healthandproductivity.
AgenticAIinenergy
AgenticAIisthenextevolutionofartificialintelligence—movingfrompassivetoolsthatrespondtocommands
toautonomoussystemscapableofmakingdecisionsandtakingaction.Agenticwilllikelybeatransformativetechnologyfortheenergyindustry.
Fromautomationtoautonomy
AgenticAIenablesintelligentsystemstoact
independentlytowardspredefinedgoalswithoutconstanthumaninput.Intheenergysector,thismeansAI
agentscanautonomouslymonitorgridhealth,optimizeloadbalancing,schedulemaintenanceandevenadjustgenerationlevelsbasedonreal-timedemandforecasts.
Theycananalyzevastamountsofreal-timedatafrom
distributedassets—solar,wind,storage,EVs—anddynamicallycoordinatetheiroutput.Theseagents
operatecontinuously,adapttochangingconditions
andmakedecisionsthatpreviouslyrequiredmanualintervention—dramaticallyimprovingresponsivenessandefficiency.
Transformingcustomerandmarketinteractions
Onthedemandside,agenticAIcanempowerindustrialandcommercialcustomerstoautomaticallybuy,store,orsellenergybasedonpricesignals,usagepatterns,
orcarbontargets.Theseagentscannegotiateenergycontracts,managemicrogrids,orbidintoflexibility
marketswithminimalhumanoversight,openingupnewvaluestreamsandradicallystreamliningenergyparticipationforcustomers.
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|12
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
transformation
Acceleratingdecarbonizationandinnovation
Bycontinuouslylearningandoptimizingacrossthe
system,autonomousagentscanplayakeyrolein
acceleratingdecarbonization.Theycanoptimizedemandforhigh-usagecustomers,reduceenergywasteand
orchestratelow-carbonsolutionsacrosscomplex
ecosystems.Astheenergyindustryevolvesintoa
dynamic,software-definedinfrastructure,agenticAIwilllikelybecentraltounlockinginnovation,reducingcostsandensuringresilienceinanet-zerofuture.
UnlockingAIpotential
ThepotentialofAI—traditional,generative,and
agentic—isvast.Energyorganizationsmayinevitably
identifynumerouspriorityusecases.Butwithout
orchestration,effortscanbecomesiloedormisaligned.Successdependsonharmonizingtheseusecaseswitheachotherandwithadjacenttechnologiessuchasdigitaltwins,HPC,CRMandAR/VR.
Evolvingtheenterprisetechnologyarchitecture
AImustintegratewiththeexistingtechstack.Thisrequiresreviewingenterprisearchitecturetoidentifyopportunitiesforstreamliningandmodernization.
Dataiscentral—AIneedsstructuredandunstructureddatafromvariedsources.Robustcapabilitiesfor
ingestion,storage,governanceandaccesscontrolsareessentialforscale.
Newlayersoforchestrationrequired
GenerativeandagenticAIdemandneworchestrationlayerstomanagedata,prompts,andinteractions
acrossagentsandsystems.Theseshouldalignwithenterprisegoals.Securityshouldrunthroughoutthestack—fromdesigntooperation.Finally,intuitive,user-friendlyinterfacesarecriticaltodrivetrust,
adoptionandlong-termvaluerealization.
Evolvingtheecosystem
Theroleoftheecosystemarchitectisemergingas
acriticalcomplementtothetraditionalenterprise
architect.Whileenterprisearchitectsfocuson
optimizinginternalsystemsandstructures,
ecosystemarchitectstakeabroader,outward-lookingview.Theyareresponsiblefordesigningthe
interconnectedplatforms,dataflows,andcollaborativeframeworksthatenableutilitiestooperateas
partofawider,intelligentecosystem—includingcustomers,competitors,regulators,suppliersandtechnologypartners.
AgenticAI
isthenextevolutionof
artificialintelligence—
movingfrompassivetoolsthatrespondtocommandstoautonomoussystems
capableofmakingdecisionsandtakingaction.
Intelligentenergy:AblueprintforcreatingvaluethroughAI-driventransformation|13
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Foreword
Ataglance
Introduction
Researchfindings
AIinenergy:Currentstate
Buildingtheintelligent
energycompany
Firstphase
Secondphase
Thirdphase
Keyconsiderations
GuidingyourAI
t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目需求獲取技巧試題及答案
- 軟考網絡工程師試題及答案創造力2025年
- 西方立法與行政關系的試題及答案
- 公共政策中的信任建設研究試題及答案
- 機電工程的材料科學概述與應用試題及答案
- 政治權力的合法性與維持試題及答案
- 西方國家的選舉制度與民主構建試題及答案
- 政治權力的制衡與平衡研究試題及答案
- 解析2025年信息系統項目管理師試題及答案
- 滑坡型變化2025年西方政治制度試題及答案
- 2024-2025學年人教版八年級下冊期末數學質量檢測試卷(含答案)
- 江蘇省南通市合作盟校2025年高考化學四模試卷含解析
- 猴痘防控方案培訓課件
- 新版GSP《醫療器械經營質量管理規范》培訓試題
- 新版2025心肺復蘇術指南
- DB45T 1056-2014 土地整治工程 第2部分:質量檢驗與評定規程
- 國有企業合規管理與風險控制
- 2025非開挖施工用球墨鑄鐵管第1部分:頂管法用
- TNXZX 031-2024 牛羊肉電商銷售質量服務規范
- 調味品干貨供貨服務方案
- 花樣跳繩知到智慧樹章節測試課后答案2024年秋深圳信息職業技術學院
評論
0/150
提交評論