




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁四川民族學(xué)院《大模型與ChatGPT原理及應(yīng)用》
2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的發(fā)展過程中,算力的提升起到了重要的推動(dòng)作用。假設(shè)一個(gè)研究團(tuán)隊(duì)需要進(jìn)行大規(guī)模的人工智能模型訓(xùn)練。以下關(guān)于算力對人工智能的影響的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的算力能夠加速模型的訓(xùn)練過程,縮短研發(fā)周期B.更高的算力可以支持更復(fù)雜的模型結(jié)構(gòu)和更多的數(shù)據(jù)處理C.只要有足夠的算力,就可以忽略模型的優(yōu)化和算法的改進(jìn)D.算力的成本和可獲取性會(huì)影響人工智能技術(shù)的應(yīng)用和推廣2、在人工智能的圖像生成任務(wù)中,變分自編碼器(VAE)是一種常用的模型。假設(shè)要使用VAE生成新的圖像,以下關(guān)于VAE的描述,正確的是:()A.VAE通過學(xué)習(xí)數(shù)據(jù)的潛在分布來生成新的圖像,生成的圖像與原始數(shù)據(jù)完全相同B.VAE生成的圖像質(zhì)量不如生成對抗網(wǎng)絡(luò)(GAN),因此在實(shí)際應(yīng)用中逐漸被淘汰C.VAE可以在生成圖像的同時(shí)對圖像進(jìn)行壓縮和編碼,節(jié)省存儲(chǔ)空間D.VAE只能用于生成簡單的圖像,如數(shù)字和幾何圖形,無法生成復(fù)雜的自然圖像3、人工智能在藝術(shù)創(chuàng)作領(lǐng)域的探索引起了廣泛關(guān)注。假設(shè)要利用人工智能生成音樂作品,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)算法學(xué)習(xí)大量的音樂作品,生成新的旋律和節(jié)奏B.可以與人類音樂家合作,共同創(chuàng)作出獨(dú)特的音樂作品C.人工智能生成的音樂作品在藝術(shù)價(jià)值和創(chuàng)造性上能夠超越人類音樂家的作品D.為音樂創(chuàng)作提供新的靈感和可能性,但不能完全取代人類的創(chuàng)造力4、人工智能中的知識圖譜技術(shù)可以將實(shí)體、關(guān)系和屬性以圖的形式表示,為智能應(yīng)用提供豐富的語義信息。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史事件的知識圖譜,需要整合大量的文本、圖像和音頻資料。以下哪種方法在知識抽取和融合方面最為關(guān)鍵?()A.自然語言處理技術(shù)B.圖像識別技術(shù)C.音頻處理技術(shù)D.以上技術(shù)綜合運(yùn)用5、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,引起了廣泛關(guān)注。假設(shè)要利用預(yù)訓(xùn)練語言模型進(jìn)行特定任務(wù)的微調(diào)。以下關(guān)于預(yù)訓(xùn)練語言模型的描述,哪一項(xiàng)是不正確的?()A.預(yù)訓(xùn)練語言模型在大規(guī)模通用語料上學(xué)習(xí)了語言的通用知識和模式B.微調(diào)時(shí)可以使用少量的特定任務(wù)數(shù)據(jù),快速適應(yīng)新的任務(wù)C.預(yù)訓(xùn)練語言模型的參數(shù)規(guī)模越大,性能一定越好D.可以根據(jù)具體需求對預(yù)訓(xùn)練語言模型的輸出進(jìn)行進(jìn)一步的處理和優(yōu)化6、人工智能中的專家系統(tǒng)是一種基于知識的系統(tǒng)。假設(shè)有一個(gè)用于故障診斷的專家系統(tǒng),需要將專家的知識和經(jīng)驗(yàn)轉(zhuǎn)化為系統(tǒng)的規(guī)則和推理機(jī)制。以下關(guān)于專家系統(tǒng)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.專家系統(tǒng)的性能取決于知識的準(zhǔn)確性和完整性B.專家系統(tǒng)能夠處理不確定性和模糊性的知識C.專家系統(tǒng)的開發(fā)需要大量的時(shí)間和專業(yè)知識D.專家系統(tǒng)一旦開發(fā)完成,就不需要進(jìn)行更新和維護(hù)7、當(dāng)利用人工智能進(jìn)行藥物研發(fā),例如預(yù)測藥物分子的活性和副作用,以下哪種技術(shù)和數(shù)據(jù)可能是重要的支撐?()A.化學(xué)信息學(xué)和分子模擬B.生物醫(yī)學(xué)數(shù)據(jù)和機(jī)器學(xué)習(xí)C.藥物臨床試驗(yàn)數(shù)據(jù)和統(tǒng)計(jì)分析D.以上都是8、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛,例如疾病診斷和醫(yī)療影像分析。假設(shè)一個(gè)基于人工智能的醫(yī)療診斷系統(tǒng)正在研發(fā)中,以下關(guān)于該系統(tǒng)的描述,正確的是:()A.只要輸入足夠多的病例數(shù)據(jù),該系統(tǒng)就能準(zhǔn)確診斷所有疾病,無需醫(yī)生干預(yù)B.該系統(tǒng)可以完全替代醫(yī)生的經(jīng)驗(yàn)和判斷,因?yàn)槿斯ぶ悄芩惴ǜ泳_C.雖然人工智能可以提供輔助診斷,但醫(yī)生的專業(yè)知識和臨床經(jīng)驗(yàn)仍然至關(guān)重要D.人工智能醫(yī)療診斷系統(tǒng)的準(zhǔn)確性不受數(shù)據(jù)質(zhì)量和多樣性的影響9、在人工智能的研究中,模型的可解釋性是一個(gè)重要的問題。假設(shè)開發(fā)了一個(gè)用于預(yù)測股票價(jià)格的人工智能模型,但用戶對模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預(yù)測的?()A.繪制復(fù)雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量10、在人工智能的文本摘要生成中,假設(shè)需要從長篇文章中提取關(guān)鍵信息并生成簡潔準(zhǔn)確的摘要。以下哪種方法能夠更好地捕捉文章的主旨和重點(diǎn)?()A.基于注意力機(jī)制的模型,關(guān)注重要的文本部分B.按照文章的開頭和結(jié)尾提取關(guān)鍵語句C.隨機(jī)選擇文章中的段落作為摘要D.不進(jìn)行任何分析,直接輸出原文的前幾段11、在人工智能的發(fā)展中,倫理和社會(huì)問題受到越來越多的關(guān)注。假設(shè)一個(gè)城市正在考慮大規(guī)模部署自動(dòng)駕駛汽車。以下關(guān)于人工智能倫理問題的描述,哪一項(xiàng)是錯(cuò)誤的?()A.自動(dòng)駕駛汽車在面臨道德困境時(shí),如選擇保護(hù)乘客還是行人,需要制定明確的決策規(guī)則B.人工智能的應(yīng)用可能導(dǎo)致部分工作崗位的消失,但同時(shí)也會(huì)創(chuàng)造新的就業(yè)機(jī)會(huì)C.只要人工智能技術(shù)能夠帶來便利和效率,就無需考慮其可能產(chǎn)生的倫理和社會(huì)影響D.數(shù)據(jù)隱私和安全是人工智能應(yīng)用中需要重點(diǎn)關(guān)注的倫理問題,需要采取措施保護(hù)用戶的個(gè)人信息12、在人工智能的教育應(yīng)用中,個(gè)性化學(xué)習(xí)系統(tǒng)可以根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)內(nèi)容和建議。假設(shè)要開發(fā)一個(gè)這樣的系統(tǒng),需要準(zhǔn)確評估學(xué)生的知識水平和學(xué)習(xí)能力。以下哪種評估方法和模型在實(shí)現(xiàn)個(gè)性化學(xué)習(xí)方面最為準(zhǔn)確和有效?()A.基于標(biāo)準(zhǔn)化測試的評估B.基于學(xué)習(xí)行為數(shù)據(jù)的動(dòng)態(tài)評估C.教師的主觀評價(jià)D.同學(xué)之間的相互評價(jià)13、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)圖像中存在多個(gè)不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測算法能夠較好地應(yīng)對這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測D.以上都是14、人工智能中的優(yōu)化算法用于訓(xùn)練模型和尋找最優(yōu)解。假設(shè)要訓(xùn)練一個(gè)復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,以下哪種優(yōu)化算法可能最為有效?()A.隨機(jī)梯度下降(SGD)算法,簡單直接,適用于各種模型B.自適應(yīng)矩估計(jì)(Adam)算法,能夠自動(dòng)調(diào)整學(xué)習(xí)率,收斂速度快C.牛頓法,計(jì)算精度高,但計(jì)算復(fù)雜度大,不適合大規(guī)模數(shù)據(jù)D.以上算法的效果取決于具體的問題和模型結(jié)構(gòu),需要進(jìn)行實(shí)驗(yàn)和比較15、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)智能機(jī)器人需要在迷宮中找到出口,通過與環(huán)境的交互獲得獎(jiǎng)勵(lì)。在這種情況下,以下關(guān)于強(qiáng)化學(xué)習(xí)算法的選擇,哪一項(xiàng)是最合適的?()A.Q-learning算法,通過估計(jì)狀態(tài)-動(dòng)作值函數(shù)來選擇最優(yōu)動(dòng)作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報(bào)C.蒙特卡羅方法,通過隨機(jī)采樣來估計(jì)價(jià)值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法16、在人工智能的圖像生成任務(wù)中,例如生成逼真的人臉圖像或風(fēng)景圖像,假設(shè)需要生成具有高度細(xì)節(jié)和真實(shí)感的圖像。以下哪種技術(shù)或模型在圖像生成方面表現(xiàn)較為出色?()A.生成對抗網(wǎng)絡(luò)(GANs),通過對抗訓(xùn)練生成圖像B.自編碼器(Autoencoder),壓縮和解壓縮圖像C.傳統(tǒng)的圖像處理算法,如濾波和邊緣檢測D.隨機(jī)生成像素值來創(chuàng)建圖像17、在人工智能的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的腫瘤區(qū)域準(zhǔn)確分割出來,以下關(guān)于選擇分割算法的考慮,哪一項(xiàng)是最關(guān)鍵的?()A.算法的計(jì)算復(fù)雜度,以確保能夠快速處理大量圖像B.算法在其他領(lǐng)域的應(yīng)用效果,而不是針對醫(yī)學(xué)圖像的特定性能C.算法是否能夠利用多模態(tài)的醫(yī)學(xué)圖像數(shù)據(jù),如CT、MRI等D.算法是否具有漂亮的可視化效果,而不是分割的準(zhǔn)確性18、在一個(gè)利用人工智能進(jìn)行智能安防的系統(tǒng)中,例如識別監(jiān)控視頻中的異常行為或可疑人員,以下哪種技術(shù)可能對于實(shí)時(shí)處理和準(zhǔn)確識別起到重要作用?()A.快速目標(biāo)檢測算法B.高效的特征提取方法C.分布式計(jì)算框架D.以上都是19、在人工智能的研究中,算法的選擇和優(yōu)化至關(guān)重要。以下關(guān)于人工智能算法的敘述,不正確的是()A.不同的算法適用于不同的問題和數(shù)據(jù)特點(diǎn),需要根據(jù)具體情況進(jìn)行選擇B.算法的優(yōu)化可以提高計(jì)算效率和模型性能,例如通過調(diào)整參數(shù)、使用更高效的計(jì)算框架等C.新的算法不斷涌現(xiàn),但傳統(tǒng)的算法在某些情況下仍然具有不可替代的優(yōu)勢D.一旦選擇了一種算法,就不能再進(jìn)行更改和優(yōu)化,否則會(huì)影響模型的穩(wěn)定性20、人工智能中的計(jì)算機(jī)視覺技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計(jì)算機(jī)視覺的描述,不準(zhǔn)確的是()A.目標(biāo)檢測、圖像分類和語義分割是計(jì)算機(jī)視覺中的常見任務(wù)B.計(jì)算機(jī)視覺技術(shù)可以應(yīng)用于自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測等領(lǐng)域C.計(jì)算機(jī)視覺系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動(dòng)了計(jì)算機(jī)視覺技術(shù)的發(fā)展二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)談?wù)勅斯ぶ悄茉陔娚绦袠I(yè)的應(yīng)用實(shí)例。2、(本題5分)簡述人工智能對就業(yè)市場的影響。3、(本題5分)簡述信息抽取在自然語言處理中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析一個(gè)基于人工智能的傳統(tǒng)手工藝品市場需求預(yù)測模型,評估其準(zhǔn)確性和影響因素。2、(本題5分)以某智能廣播電視節(jié)目推薦系統(tǒng)為例,探討人工智能在內(nèi)容篩選和用戶興趣匹配中的應(yīng)用。3、(本題5分)研究一個(gè)使用人工智能的智能舞蹈人才選拔系統(tǒng),分析其如何從眾多候選人中挑選優(yōu)秀舞蹈人才。4、(本題5分)分析一個(gè)基于人工智能的服裝設(shè)計(jì)系統(tǒng),探
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 成都健身房裝修與健身課程開發(fā)合同
- 星級酒店附屬餐廳總經(jīng)理綜合能力聘用合同
- 水果種植與深加工一體化采購合同
- 高管股權(quán)激勵(lì)計(jì)劃實(shí)施與管理合同
- 酒店代理轉(zhuǎn)讓合同協(xié)議書
- 買賣合同沒有協(xié)議書
- 系統(tǒng)設(shè)備維保合同協(xié)議書
- 種植桉樹合同協(xié)議書范本
- 學(xué)校交費(fèi)合同協(xié)議書樣本
- 戀愛合同協(xié)議書電視劇
- 鐵路工程地質(zhì)勘查階段監(jiān)理工作總結(jié)
- DB41-T 2322-2022水資源公報(bào)數(shù)據(jù)庫設(shè)計(jì)規(guī)范
- 外科經(jīng)典換藥術(shù)培訓(xùn)課件
- 營養(yǎng)與健康教材課件匯總完整版ppt全套課件最全教學(xué)教程整本書電子教案全書教案課件合集
- 吊籃保養(yǎng)記錄月檢
- 新膠工割膠技術(shù)培訓(xùn)
- 掛籃安裝細(xì)則
- 2022年高級中學(xué)校園文化建設(shè)方案
- 《急診與災(zāi)難醫(yī)學(xué)》第三版-教學(xué)大綱(修改完整版)
- 飽和蒸汽壓力——溫度對照表
- 工序單位能耗地計(jì)算方法、及企業(yè)噸鋼可比能耗計(jì)算方法
評論
0/150
提交評論