




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省泰州市高港區(qū)達標名校中考數(shù)學押題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在中,.點是的中點,連結,過點作,分別交于點,與過點且垂直于的直線相交于點,連結.給出以下四個結論:①;②點是的中點;③;④,其中正確的個數(shù)是()A.4 B.3 C.2 D.12.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.43.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.44.如圖是一次數(shù)學活動課制作的一個轉盤,盤面被等分成四個扇形區(qū)域,并分別標有數(shù)字6、7、8、1.若轉動轉盤一次,轉盤停止后(當指針恰好指在分界線上時,不記,重轉),指針所指區(qū)域的數(shù)字是奇數(shù)的概率為()A.12 B.14 C.15.若實數(shù)a,b滿足|a|>|b|,則與實數(shù)a,b對應的點在數(shù)軸上的位置可以是()A. B. C. D.6.如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為1.若AA'=1,則A'D等于()A.2 B.3 C. D.7.將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.8.下列計算正確的是()A.a2+a2=a4 B.a5?a2=a7 C.(a2)3=a5 D.2a2﹣a2=29.如下圖所示,該幾何體的俯視圖是()A. B. C. D.10.某工程隊開挖一條480米的隧道,開工后,每天比原計劃多挖20米,結果提前4天完成任務,若設原計劃每天挖米,那么求時所列方程正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖是測量河寬的示意圖,AE與BC相交于點D,∠B=∠C=90°,測得BD=120m,DC=60m,EC=50m,求得河寬AB=______m.12.某中學數(shù)學教研組有25名教師,將他們分成三組,在38~45(歲)組內有8名教師,那么這個小組的頻率是_______。13.如圖,直線m∥n,以直線m上的點A為圓心,適當長為半徑畫弧,分別交直線m,n于點B、C,連接AC、BC,若∠1=30°,則∠2=_____.14.小紅沿坡比為1:的斜坡上走了100米,則她實際上升了_____米.15.將點P(﹣1,3)繞原點順時針旋轉180°后坐標變?yōu)開____.16.如圖,△ABC中,AB=AC,D是AB上的一點,且AD=AB,DF∥BC,E為BD的中點.若EF⊥AC,BC=6,則四邊形DBCF的面積為____.三、解答題(共8題,共72分)17.(8分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數(shù)關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.18.(8分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,點P為邊AB上一動點,以P為圓心,BP為半徑的圓交邊BC于點Q.(1)求AB的長;(2)當BQ的長為時,請通過計算說明圓P與直線DC的位置關系.19.(8分)“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產空調,已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元,求A、B兩種型號的空調的購買價各是多少元?20.(8分)如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.(1)求證:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半徑.21.(8分)北京時間2019年3月10日0時28分,我國在西昌衛(wèi)星發(fā)射中心用長征三號乙運載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進入預定軌道.如圖,火星從地面處發(fā)射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求發(fā)射臺與雷達站之間的距離;(Ⅱ)求這枚火箭從到的平均速度是多少(結果精確到0.01)?22.(10分)某市舉行“傳承好家風”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機抽取了部分參賽征文,統(tǒng)計了它們的成績,并繪制了如圖不完整的兩幅統(tǒng)計圖表.征文比賽成績頻數(shù)分布表分數(shù)段頻數(shù)頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計1請根據(jù)以上信息,解決下列問題:(1)征文比賽成績頻數(shù)分布表中c的值是;(2)補全征文比賽成績頻數(shù)分布直方圖;(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎征文的篇數(shù).23.(12分)如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.(1)請判斷四邊形AEA′F的形狀,并說明理由;(2)當四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.24.在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,連接EF.(1)如圖,點D在線段CB上時,①求證:△AEF≌△ADC;②連接BE,設線段CD=x,BE=y,求y2﹣x2的值;(2)當∠DAB=15°時,求△ADE的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
用特殊值法,設出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關線段的長;易證△GAB≌△DBC,求出相關線段的長;再證AG∥BC,求出相關線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質以及等腰直角三角形的相關性質,中等難度,注意合理的運用特殊值法是解題關鍵.2、D【解析】
先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數(shù)式,解題的關鍵是掌握整體代入法.3、D【解析】
先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數(shù)有4個.故選D.【點睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質,角平分線的定義,以及等腰三角形的判定與性質,熟練掌握平行四邊形、矩形及菱形的判定與性質是解本題的關鍵.4、A【解析】
轉盤中4個數(shù),每轉動一次就要4種可能,而其中是奇數(shù)的有2種可能.然后根據(jù)概率公式直接計算即可【詳解】奇數(shù)有兩種,共有四種情況,將轉盤轉動一次,求得到奇數(shù)的概率為:P(奇數(shù))=24=1【點睛】此題主要考查了幾何概率,正確應用概率公式是解題關鍵.5、D【解析】
根據(jù)絕對值的意義即可解答.【詳解】由|a|>|b|,得a與原點的距離比b與原點的距離遠,只有選項D符合,故選D.【點睛】本題考查了實數(shù)與數(shù)軸,熟練運用絕對值的意義是解題關鍵.6、A【解析】分析:由S△ABC=9、S△A′EF=1且AD為BC邊的中線知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根據(jù)△DA′E∽△DAB知,據(jù)此求解可得.詳解:如圖,∵S△ABC=9、S△A′EF=1,且AD為BC邊的中線,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵將△ABC沿BC邊上的中線AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,則,即,解得A′D=2或A′D=-(舍),故選A.點睛:本題主要平移的性質,解題的關鍵是熟練掌握平移變換的性質與三角形中線的性質、相似三角形的判定與性質等知識點.7、B【解析】
根據(jù)簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.8、B【解析】
根據(jù)整式的加減乘除乘方運算法則逐一運算即可。【詳解】A.,故A選項錯誤。B.,故B選項正確。C.,故C選項錯誤。D.,故D選項錯誤。故答案選B.【點睛】本題考查整式加減乘除運算法則,只需熟記法則與公式即可。9、B【解析】
根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.10、C【解析】
本題的關鍵描述語是:“提前1天完成任務”;等量關系為:原計劃用時?實際用時=1.【詳解】解:原計劃用時為:,實際用時為:.所列方程為:,故選C.【點睛】本題考查列分式方程,分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
由兩角對應相等可得△BAD∽△CED,利用對應邊成比例即可得兩岸間的大致距離AB的長.【詳解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案為1.【點睛】本題主要考查了相似三角形的應用,用到的知識點為:兩角對應相等的兩三角形相似;相似三角形的對應邊成比例.12、0.1【解析】
根據(jù)頻率的求法:頻率=,即可求解.【詳解】解:根據(jù)題意,38-45歲組內的教師有8名,
即頻數(shù)為8,而總數(shù)為25;
故這個小組的頻率是為=0.1;
故答案為0.1.【點睛】本題考查頻率、頻數(shù)的關系,屬于基礎題,關鍵是掌握頻率的求法:頻率=.13、75°【解析】試題解析:∵直線l1∥l2,∴故答案為14、50【解析】
根據(jù)題意設鉛直距離為x,則水平距離為,根據(jù)勾股定理求出x的值,即可得到結果.【詳解】解:設鉛直距離為x,則水平距離為,根據(jù)題意得:,解得:(負值舍去),則她實際上升了50米,故答案為:50【點睛】本題考查了解直角三角形的應用,此題關鍵是用同一未知數(shù)表示出下降高度和水平前進距離.15、(1,﹣3)【解析】
畫出平面直角坐標系,然后作出點P繞原點O順時針旋轉180°的點P′的位置,再根據(jù)平面直角坐標系寫出坐標即可.【詳解】如圖所示:點P(-1,3)繞原點O順時針旋轉180°后的對應點P′的坐標為(1,-3).
故答案是:(1,-3).【點睛】考查了坐標與圖形變化-旋轉,作出圖形,利用數(shù)形結合的思想求解更簡便,形象直觀.16、2【解析】
解:如圖,過D點作DG⊥AC,垂足為G,過A點作AH⊥BC,垂足為H,∵AB=AC,點E為BD的中點,且AD=AB,∴設BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.三、解答題(共8題,共72分)17、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】
(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意列出方程組求解,(2)①據(jù)題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數(shù),所以x取34,y取最大值,(3)據(jù)題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據(jù)題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據(jù)題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數(shù),∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據(jù)題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數(shù)量滿足33≤x≤70的整數(shù)時,均獲得最大利潤;③當50<m<100時,m﹣50>0,y隨x的增大而增大,∴當x=70時,y取得最大值.即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.【點睛】本題主要考查了一次函數(shù)的應用,二元一次方程組及一元一次不等式的應用,解題的關鍵是根據(jù)一次函數(shù)x值的增大而確定y值的增減情況.18、(1)AB長為5;(2)圓P與直線DC相切,理由詳見解析.【解析】
(1)過A作AE⊥BC于E,根據(jù)矩形的性質得到CE=AD=1,AE=CD=3,根據(jù)勾股定理即可得到結論;
(2)過P作PF⊥BQ于F,根據(jù)相似三角形的性質得到PB=,得到PA=AB-PB=,過P作PG⊥CD于G交AE于M,根據(jù)相似三角形的性質得到PM=,根據(jù)切線的判定定理即可得到結論.【詳解】(1)過A作AE⊥BC于E,
則四邊形AECD是矩形,
∴CE=AD=1,AE=CD=3,
∵AB=BC,
∴BE=AB-1,
在Rt△ABE中,∵AB2=AE2+BE2,
∴AB2=32+(AB-1)2,
解得:AB=5;
(2)過P作PF⊥BQ于F,
∴BF=BQ=,
∴△PBF∽△ABE,
∴,
∴,
∴PB=,
∴PA=AB-PB=,
過P作PG⊥CD于G交AE于M,
∴GM=AD=1,∵DC⊥BC∴PG∥BC
∴△APM∽△ABE,
∴,
∴,
∴PM=,
∴PG=PM+MG==PB,
∴圓P與直線DC相切.【點睛】本題考查了直線與圓的位置關系,矩形的判定和性質,相似三角形的判定和性質,正確的作出輔助線是解題的關鍵.19、A、B兩種型號的空調購買價分別為2120元、2320元【解析】試題分析:根據(jù)題意,設出A、B兩種型號的空調購買價分別為x元、y元,然后根據(jù)“已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元”,列出方程求解即可.試題解析:設A、B兩種型號的空調購買價分別為x元、y元,依題意得:解得:答:A、B兩種型號的空調購買價分別為2120元、2320元20、(1)見解析;(2)【解析】分析:(1)首先連接CO,根據(jù)CD與⊙O相切于點C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.詳解:(1)證明:如圖,連接CO,,∵CD與⊙O相切于點C,∴∠OCD=90°,∵AB是圓O的直徑,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:設CD為x,則AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半徑是.點睛:此題主要考查了切線的性質和應用,以及勾股定理的應用,要熟練掌握.21、(Ⅰ)發(fā)射臺與雷達站之間的距離約為;(Ⅱ)這枚火箭從到的平均速度大約是.【解析】
(Ⅰ)在Rt△ACD中,根據(jù)銳角三角函數(shù)的定義,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的長,利用∠ADC的正弦值求出AC的長,進而可得AB的長,即可得答案.【詳解】(Ⅰ)在中,,≈0.74,∴.答:發(fā)射臺與雷達站之間的距離約為.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:這枚火箭從到的平均速度大約是.【點睛】本題考查解直角三角形的應用,熟練掌握銳角三角函數(shù)的定義是解題關鍵.22、(1)0.2;(2)答案見解析;(3)300【解析】
第一問,根據(jù)頻率的和為1,求出c的值;第二問,先用分數(shù)段是90到100的頻數(shù)和頻率求出總的樣本數(shù)量,然后再乘以頻率分別求出a和b的值,再畫出頻數(shù)分布直方圖;第三問用全市征文的總篇數(shù)乘以80分以上的頻率得到全市80分以上的征文的篇數(shù).【詳解】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案為0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,補全征文比賽成績頻數(shù)分布直方圖:(3)全市獲得一等獎征文的篇數(shù)為:1000×(0.2+0.1)=300(篇).【點睛】掌握有關頻率和頻數(shù)的相關概念和計算,是解答本題的關鍵.23、(1)四邊形AEA′F為菱形.理由見解析;(2)1.【解析】
(1)先證明AE=AF,再根據(jù)折疊的性質得AE=A′E,AF=A′F,然后根據(jù)菱形的判定方法可判斷四邊形AEA′F為菱形;(2)四先利用四邊形AEA′F是正方形得到∠A=90°,則AB=AC=BC=6,然后利用正方形AEA′F的面積是△ABC的一半得到AE2=??6?6,然后利用算術平方根的定義求AE即可.【詳解】(1)四邊形AEA′F為菱形.理由如下:∵AB=AC,∴∠B=∠C,∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 秋冬疾病預防指南
- 2025西安鐵路職業(yè)技術學院輔導員考試試題及答案
- 2025遼寧石化職業(yè)技術學院輔導員考試試題及答案
- 2025貴州黔南經濟學院輔導員考試試題及答案
- T/ZHCA 005-2019化妝品影響皮膚彈性測試方法
- 過敏性疾病的一級預防
- 親子活動設計方案
- 2025年廣東省深圳市坪山區(qū)中考歷史二模試卷
- T/ZBH 026-2023晶硅光伏組件用材料第3部分:雙玻光伏組件用壓延玻璃彎曲強度、抗沖擊性及表面應力技術規(guī)范
- 健康體檢課件
- 自愿放棄孩子協(xié)議書(2篇)
- 勞動精神課件教學課件
- 甘肅省蘭州市2022年中考英語真題試卷(含答案)
- 220kVGIS安裝施工方案
- 《鉸鏈四桿機構》(課件)
- 通信企業(yè)協(xié)會網絡安全人員能力認證考試復習題庫(含答案)
- 化學家門捷列夫課件
- 小學一年級體育教案全集
- 2024年新人教版七年級數(shù)學下冊期末考試數(shù)學試卷-含答案
- 運動健康管理智慧樹知到答案2024年上海師范大學
- 2024年廣東省預防接種技能競賽理論考試題庫(含答案)
評論
0/150
提交評論