




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省鎮江市揚中市重點中學中考數學最后沖刺濃縮精華卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.點M(1,2)關于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)2.如圖所示,點E是正方形ABCD內一點,把△BEC繞點C旋轉至△DFC位置,則∠EFC的度數是()A.90° B.30° C.45° D.60°3.在某校“我的中國夢”演講比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的()A.眾數 B.方差 C.平均數 D.中位數4.某市初中學業水平實驗操作考試,要求每名學生從物理,化學、生物三個學科中隨機抽取一科參加測試,小華和小強都抽到物理學科的概率是()A. B. C. D.5.已知M,N,P,Q四點的位置如圖所示,下列結論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補6.的相反數是()A. B.2 C. D.7.據國家統計局2018年1月18日公布,2017年我國GDP總量為827122億元,首次登上80萬億元的門檻,數據827122億元用科學記數法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10148.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.9.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.10.下列四個函數圖象中,當x<0時,函數值y隨自變量x的增大而減小的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.中國人最先使用負數,魏晉時期的數學家劉徽在“正負術”的注文中指出,可將算籌(小棍形狀的記數工具)正放表示正數,斜放表示負數.如圖,根據劉徽的這種表示法,觀察圖①,可推算圖②中所得的數值為_____.12.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點P是半圓弧AC的中點,連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對值是_____.13.定義:在平面直角坐標系xOy中,把從點P出發沿縱或橫方向到達點至多拐一次彎的路徑長稱為P,Q的“實際距離”如圖,若,,則P,Q的“實際距離”為5,即或環保低碳的共享單車,正式成為市民出行喜歡的交通工具設A,B兩個小區的坐標分別為,,若點表示單車停放點,且滿足M到A,B的“實際距離”相等,則______.14.不等式組的非負整數解的個數是_____.15.若關于x的一元二次方程(a﹣1)x2﹣x+1=0有實數根,則a的取值范圍為________.16.長、寬分別為a、b的矩形,它的周長為14,面積為10,則a2b+ab2的值為_____.17.如圖,AB是⊙O的弦,點C在過點B的切線上,且OC⊥OA,OC交AB于點P,已知∠OAB=22°,則∠OCB=__________.三、解答題(共7小題,滿分69分)18.(10分)為了提高中學生身體素質,學校開設了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學生進行問卷調查(每個被調查的對象必須選擇而且只能在四種體育活動中選擇一種),將數據進行整理并繪制成以下兩幅統計圖(未畫完整).這次調查中,一共調查了________名學生;請補全兩幅統計圖;若有3名喜歡跳繩的學生,1名喜歡足球的學生組隊外出參加一次聯誼活動,欲從中選出2人擔任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學生的概率.19.(5分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.20.(8分)如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).(1)求點B的坐標;(2)求經過A、O、B三點的拋物線的函數表達式;(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.21.(10分)端午節“賽龍舟,吃粽子”是中華民族的傳統習俗.節日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.根據以上情況,請你回答下列問題:假設小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.22.(10分)已知A(﹣4,2)、B(n,﹣4)兩點是一次函數y=kx+b和反比例函數y=圖象的兩個交點.求一次函數和反比例函數的解析式;求△AOB的面積;觀察圖象,直接寫出不等式kx+b﹣>0的解集.23.(12分)如圖1,經過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.24.(14分)計算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
關于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變為相反數.【詳解】點M(1,2)關于y軸對稱點的坐標為(-1,2)【點睛】本題考查關于坐標軸對稱的點的坐標特征,牢記關于坐標軸對稱的點的性質是解題的關鍵.2、C【解析】
根據正方形的每一個角都是直角可得∠BCD=90°,再根據旋轉的性質求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據等腰直角三角形的性質解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點睛】本題目是一道考查旋轉的性質問題——每對對應點到旋轉中心的連線的夾角都等于旋轉角度,每對對應邊相等,故為等腰直角三角形.3、D【解析】
根據中位數是一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數)的意義,9人成績的中位數是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數,比較即可.【詳解】由于總共有9個人,且他們的分數互不相同,第5的成績是中位數,要判斷是否進入前5名,故應知道中位數的多少.故本題選:D.【點睛】本題考查了統計量的選擇,熟練掌握眾數,方差,平均數,中位數的概念是解題的關鍵.4、A【解析】
作出樹狀圖即可解題.【詳解】解:如下圖所示一共有9中可能,符合題意的有1種,故小華和小強都抽到物理學科的概率是,故選A.【點睛】本題考查了用樹狀圖求概率,屬于簡單題,會畫樹狀圖是解題關鍵.5、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.6、B【解析】
根據相反數的性質可得結果.【詳解】因為-2+2=0,所以﹣2的相反數是2,故選B.【點睛】本題考查求相反數,熟記相反數的性質是解題的關鍵.7、B【解析】
由科學記數法的定義可得答案.【詳解】解:827122億即82712200000000,用科學記數法表示為8.27122×1013,故選B.【點睛】科學記數法表示數的標準形式為(<10且n為整數).8、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.9、D【解析】
分別根據正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質;平方差公式的幾何背景;平行四邊形的性質.10、D【解析】
A、根據函數的圖象可知y隨x的增大而增大,故本選項錯誤;B、根據函數的圖象可知在第二象限內y隨x的增大而減增大,故本選項錯誤;C、根據函數的圖象可知,當x<0時,在對稱軸的右側y隨x的增大而減小,在對稱軸的左側y隨x的增大而增大,故本選項錯誤;D、根據函數的圖象可知,當x<0時,y隨x的增大而減小;故本選項正確.故選D.【點睛】本題考查了函數的圖象,函數的增減性,熟練掌握各函數的性質是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:根據有理數的加法,可得圖②中表示(+2)+(﹣5)=﹣1,故答案為﹣1.考點:正數和負數12、4【解析】
連接把兩部分的面積均可轉化為規則圖形的面積,不難發現兩部分面積之差的絕對值即為的面積的2倍.【詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點P是半圓弧AC的中點,OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對值是點睛:考查扇形面積和三角形的面積,把不規則圖形的面積轉化為規則圖形的面積是解題的關鍵.13、1.【解析】
根據兩點間的距離公式可求m的值.【詳解】依題意有,解得,故答案為:1.【點睛】考查了坐標確定位置,正確理解實際距離的定義是解題關鍵.14、1【解析】
先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.15、a≤且a≠1.【解析】
根據一元二次方程有實數根的條件列出關于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據題意列出關于a的不等式組是解答此題的關鍵.16、1.【解析】
由周長和面積可分別求得a+b和ab的值,再利用因式分解把所求代數式可化為ab(a+b),代入可求得答案【詳解】∵長、寬分別為a、b的矩形,它的周長為14,面積為10,
∴a+b==7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=1,
故答案為:1.【點睛】本題主要考查因式分解的應用,把所求代數式化為ab(a+b)是解題的關鍵.17、44°【解析】
首先連接OB,由點C在過點B的切線上,且OC⊥OA,根據等角的余角相等,易證得∠CBP=∠CPB,利用等腰三角形的性質解答即可.【詳解】連接OB,∵BC是⊙O的切線,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案為44°【點睛】此題考查了切線的性質.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想與方程思想的應用.三、解答題(共7小題,滿分69分)18、(1)200;(2)答案見解析;(3).【解析】
(1)由題意得:這次調查中,一共調查的學生數為:40÷20%=200(名);(2)根據題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數為:200×30%=60(名);則可補全統計圖;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與一人是喜歡跳繩、一人是喜歡足球的學生的情況,再利用概率公式即可求得答案.【詳解】解:(1)根據題意得:這次調查中,一共調查的學生數為:40÷20%=200(名);故答案為:200;(2)C組人數:200-40-70-30=60(名)B組百分比:70÷200×100%=35%如圖(3)分別用A,B,C表示3名喜歡跳繩的學生,D表示1名喜歡足球的學生;
畫樹狀圖得:∵共有12種等可能的結果,一人是喜歡跳繩、一人是喜歡足球的學生的有6種情況,∴一人是喜歡跳繩、一人是喜歡足球的學生的概率為:.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統計圖與扇形統計圖.用到的知識點為:概率=所求情況數與總情況數之比.19、證明見解析.【解析】由已知條件BE∥DF,可得出∠ABE=∠D,再利用ASA證明△ABE≌△FDC即可.證明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“點睛”此題主要考查全等三角形的判定與性質和平行線的性質等知識點的理解和掌握,此題的關鍵是利用平行線的性質求證△ABC和△FDC全等.20、(1)B(-1.2);(2)y=;(3)見解析.【解析】
(1)過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點坐標;(2)根據A、B、O三點的坐標,利用待定系數法可求得拋物線解析式;(3)由四邊形ABOP可知點P在線段AO的下方,過P作PE∥y軸交線段OA于點E,可求得直線OA解析式,設出P點坐標,則可表示出E點坐標,可表示出PE的長,進一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數的性質可求得其面積最大時P點的坐標.【詳解】(1)如圖1,過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點,∴可設拋物線解析式為y=ax2+bx,把A、B兩點坐標代入可得,解得,∴經過A、B、O原點的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點P在線段OA的下方,過P作PE∥y軸交AO于點E,如圖2,設直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設P點坐標為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當t=1時,四邊形ABOP的面積最大,此時P點坐標為(1,-),綜上可知存在使四邊形ABOP的面積最大的點P,其坐標為(1,-).【點睛】本題為二次函數的綜合應用,主要涉及待定系數法、等腰直角三角形的性質、全等三角形的判定和性質、三角形的面積以及方程思想等知識.在(1)中構造三角形全等是解題的關鍵,在(2)中注意待定系數法的應用,在(3)中用t表示出四邊形ABOP的面積是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.21、(1);(2)【解析】
(1)由題意知,共有4種等可能的結果,而取到紅棗粽子的結果有2種則P(恰好取到紅棗粽子)=.(2)由題意可得,出現的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴由上表可知,取到的兩個粽子共有16種等可能的結果,而一個是紅棗粽子,一個是豆沙粽子的結果有3種,則P(取到一個紅棗粽子,一個豆沙粽子)=.考點:列表法與樹狀圖法;概率公式.22、(1)反比例函數解析式為y=﹣,一次函數的解析式為y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】試題分析:(1)先把點A的坐標代入反比例函數解析式,即可得到m=﹣8,再把點B的坐標代入反比例函數解析式,即可求出n=1,然后利用待定系數法確定一次函數的解析式;(1)先求出直線y=﹣x﹣1與x軸交點C的坐標,然后利用S△AOB=S△AOC+S△BOC進行計算;(3)觀察函數圖象得到當x<﹣4或0<x<1時,一次函數的圖象在反比例函數圖象上方,據此可得不等式的解集.試題解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函數解析式為,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函數的解析式為y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,則x=﹣1,即直線y=﹣x﹣1與x軸交于點C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由圖可得,不等式的解集為:x<﹣4或0<x<1.考點:反比例函數與一次函數的交點問題;待定系數法求一次函數解析式.23、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質可求得的值,當點P在第一象限內時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3982-2021網上信訪事項辦理工作規范
- DB32/T 3610.1-2019道路運輸車輛主動安全智能防控系統技術規范第1部分:平臺
- DB32/T 3562-2019橋梁結構健康監測系統設計規范
- DB31/T 968.2-2016全過程信用管理要求第2部分:行為清單編制指南
- DB31/T 820-2014肉鴿屠宰場防疫技術規范
- DB31/T 578-2011飼料中玉米赤霉醇類物質的測定液相色譜-串聯質譜法
- DB31/T 1419-2023醫療付費“一件事”應用規范
- DB31/T 1384-2022城市綠地防雷通用技術要求
- DB31/T 1363-2022口腔綜合治療臺水路衛生管理要求
- DB31/T 1299-2021電梯轎廂上行超速保護裝置現場試驗方法
- 好書閱讀分享交流《福爾摩斯探案集》課件
- 【要填報的表格】園林行政許可申請表-樹木砍伐、移栽、修剪(洪山園林局專用)
- 《白龍馬》注音歌詞
- 二、問題解決型(指令性目標)QC成果案例
- 特種作業人員體檢表
- PCB制板要求模板-綜合版
- 集裝箱板房技術要求
- 瀝青與瀝青混合料教學課件
- 自身免疫病及檢驗(免疫學檢驗課件)
- 簡單機械主題單元教學設計
- 部編版語文二年級下冊第八單元整體教學設計教案
評論
0/150
提交評論