




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省淮安市洪澤縣中考三模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.有兩組數(shù)據(jù),A組數(shù)據(jù)為2、3、4、5、6;B組數(shù)據(jù)為1、7、3、0、9,這兩組數(shù)據(jù)的()A.中位數(shù)相等B.平均數(shù)不同C.A組數(shù)據(jù)方差更大D.B組數(shù)據(jù)方差更大2.計算﹣的結果為()A. B. C. D.3.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.已知拋物線y=x2-2mx-4(m>0)的頂點M關于坐標原點O的對稱點為M′,若點M′在這條拋物線上,則點M的坐標為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)5.為考察兩名實習工人的工作情況,質檢部將他們工作第一周每天生產合格產品的個數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關于以上數(shù)據(jù),說法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差6.如圖所示幾何體的主視圖是()A. B. C. D.7.如圖,彈性小球從點P(0,1)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第1次碰到正方形的邊時的點為P1(2,0),第2次碰到正方形的邊時的點為P2,…,第n次碰到正方形的邊時的點為Pn,則點P2018的坐標是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)8.如圖,在菱形ABCD中,E是AC的中點,EF∥CB,交AB于點F,如果EF=3,那么菱形ABCD的周長為()A.24 B.18 C.12 D.99.計算3a2-a2的結果是()A.4a2B.3a2C.2a2D.310.估算的值在(
)A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間11.如圖所示的幾何體的俯視圖是()A. B. C. D.12.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.正方形EFGH的頂點在邊長為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關系式為______.14.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.15.拋物線y=x2﹣2x+3的對稱軸是直線_____.16.同學們設計了一個重復拋擲的實驗:全班48人分為8個小組,每組拋擲同一型號的一枚瓶蓋300次,并記錄蓋面朝上的次數(shù),下表是依次累計各小組的實驗結果.1組1~2組1~3組1~4組1~5組1~6組1~7組1~8組蓋面朝上次數(shù)16533548363280194911221276蓋面朝上頻率0.5500.5580.5370.5270.5340.5270.5340.532根據(jù)實驗,你認為這一型號的瓶蓋蓋面朝上的概率為____,理由是:____.17.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____18.一個等腰三角形的兩邊長分別為4cm和9cm,則它的周長為__cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.20.(6分)如圖,在的矩形方格紙中,每個小正方形的邊長均為,線段的兩個端點均在小正方形的頂點上.在圖中畫出以線段為底邊的等腰,其面積為,點在小正方形的頂點上;在圖中面出以線段為一邊的,其面積為,點和點均在小正方形的頂點上;連接,并直接寫出線段的長.21.(6分)計算:.22.(8分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規(guī)在圖1確定點P,使得PM=PN;(2)設OM=x,ON=x+4,①若x=0時,使P、M、N構成等腰三角形的點P有個;②若使P、M、N構成等腰三角形的點P恰好有三個,則x的值是____________.23.(8分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉過程中,當△BEF與△COF的面積之和最大時,求AE的長.24.(10分)先化簡,再求值:(+)÷,其中x=25.(10分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設BD為xcm,CE為ycm.小聰根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小聰?shù)奶骄窟^程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補全表格上相關數(shù)值保留一位小數(shù)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;結合畫出的函數(shù)圖象,解決問題:當線段BD是線段CE長的2倍時,BD的長度約為_____cm.26.(12分)如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經(jīng)過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內接格點三角形”.設對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內接格點三角形,AB=3,且點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是()A.7 B.8 C.14 D.1627.(12分)先化簡,再求值:(),其中=
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
分別求出兩組數(shù)據(jù)的中位數(shù)、平均數(shù)、方差,比較即可得出答案.【詳解】A組數(shù)據(jù)的中位數(shù)是:4,平均數(shù)是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數(shù)據(jù)的中位數(shù)是:3,平均數(shù)是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數(shù)據(jù)的中位數(shù)不相等,平均數(shù)相等,B組方差更大.故選D.【點睛】本題考查了中位數(shù)、平均數(shù)、方差的計算,熟練掌握中位數(shù)、平均數(shù)、方差的計算方法是解答本題的關鍵.2、A【解析】
根據(jù)分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。3、D【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.4、C【解析】試題分析:=,∴點M(m,﹣m2﹣1),∴點M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點:二次函數(shù)的性質.5、D【解析】
分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進行求解后進行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關定義及求解方法是解題的關鍵.6、C【解析】
從正面看幾何體,確定出主視圖即可.【詳解】解:幾何體的主視圖為故選C.【點睛】本題考查了簡單組合體的三視圖,主視圖即為從正面看幾何體得到的視圖.7、D【解析】
先根據(jù)反射角等于入射角先找出前幾個點,直至出現(xiàn)規(guī)律,然后再根據(jù)規(guī)律進行求解.【詳解】由分析可得p(0,1)、、、、、、等,故該坐標的循環(huán)周期為7則有則有,故是第2018次碰到正方形的點的坐標為(4,1).【點睛】本題主要考察規(guī)律的探索,注意觀察規(guī)律是解題的關鍵.8、A【解析】【分析】易得BC長為EF長的2倍,那么菱形ABCD的周長=4BC問題得解.【詳解】∵E是AC中點,∵EF∥BC,交AB于點F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長是4×6=24,故選A.【點睛】本題考查了三角形中位線的性質及菱形的周長公式,熟練掌握相關知識是解題的關鍵.9、C【解析】【分析】根據(jù)合并同類項法則進行計算即可得.【詳解】3a2-a2=(3-1)a2=2a2,故選C.【點睛】本題考查了合并同類項,熟記合并同類項的法則是解題的關鍵.合并同類項就是把同類項的系數(shù)相加減,字母和字母的指數(shù)不變.10、C【解析】
由可知56,即可解出.【詳解】∵∴56,故選C.【點睛】此題主要考查了無理數(shù)的估算,掌握無理數(shù)的估算是解題的關鍵.11、D【解析】
找到從上面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.【點睛】本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.12、B【解析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對角線把矩形分成了四個面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y=2x2﹣6x+2【解析】
由AAS證明△DHE≌△AEF,得出DE=AF=x,DH=AE=1-x,再根據(jù)勾股定理,求出EH2,即可得到y(tǒng)與x之間的函數(shù)關系式.【詳解】如圖所示:∵四邊形ABCD是邊長為1的正方形,∴∠A=∠D=20°,AD=1.∴∠1+∠2=20°,∵四邊形EFGH為正方形,∴∠HEF=20°,EH=EF.∴∠1+∠1=20°,∴∠2=∠1,在△AHE與△BEF中,∴△DHE≌△AEF(AAS),∴DE=AF=x,DH=AE=1-x,在Rt△AHE中,由勾股定理得:EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;即y=2x2-6x+2(0<x<1),故答案為y=2x2-6x+2.【點睛】本題考查了正方形的性質、全等三角形的判定與性質、勾股定理,本題難度適中,求出y與x之間的函數(shù)關系式是解題的關鍵.14、1【解析】
根據(jù)相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.15、x=1【解析】
把解析式化為頂點式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對稱軸是直線x=1,故答案為x=1.【點睛】本題主要考查二次函數(shù)的性質,掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).16、0.532,在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值.【解析】
根據(jù)用頻率估計概率解答即可.【詳解】∵在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值,∴這一型號的瓶蓋蓋面朝上的概率為0.532,故答案為:0.532,在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值.【點睛】本題考查了利用頻率估計概率的知識,解答此題關鍵是用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.17、【解析】
利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質、勾股定理、直角三角形斜邊中線的性質、銳角三角函數(shù)等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考常考題型.18、1【解析】
底邊可能是4,也可能是9,分類討論,去掉不合條件的,然后可求周長.【詳解】試題解析:①當腰是4cm,底邊是9cm時:不滿足三角形的三邊關系,因此舍去.②當?shù)走吺?cm,腰長是9cm時,能構成三角形,則其周長=4+9+9=1cm.故填1.【點睛】本題考查了等腰三角形的性質和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)證明見解析;【解析】
(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據(jù)相似三角形的性質得到結論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質.20、(1)見解析;(2)見解析;(3)見解析,.【解析】
(1)直接利用網(wǎng)格結合勾股定理得出符合題意的答案;(2)直接利用網(wǎng)格結合平行四邊形的性質以及勾股定理得出符合題意的答案;(3)連接CE,根據(jù)勾股定理求出CE的長寫出即可.【詳解】解:(1)如圖所示;(2)如圖所示;(3)如圖所示;CE=.【點睛】本題主要考查了等腰三角形的性質、平行四邊形的性質、勾股定理,正確應用勾股定理是解題的關鍵.21、.【解析】
利用特殊角的三角函數(shù)值以及負指數(shù)冪的性質和絕對值的性質化簡即可得出答案.【詳解】解:原式==.故答案為.【點睛】本題考查實數(shù)運算,特殊角的三角函數(shù)值,負整數(shù)指數(shù)冪,正確化簡各數(shù)是解題關鍵.22、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】
(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點D的位置時,滿足條件;如圖4,根據(jù)等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當⊙M與OB相切時,設切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以OM為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發(fā)現(xiàn)⊙M1與直線OB有一個交點;∴當時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構成等腰三角形的點P恰好有三個,則x的值是:x=0或或故答案為x=0或或【點睛】本題考查了等腰三角形的判定,有難度,本題通過數(shù)形結合的思想解決問題,解題的關鍵是熟練掌握已知一邊,作等腰三角形的畫法.23、(1);(2)詳見解析;(3)AE=.【解析】
(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應邊成比例,證得OG?OB=OE2,再利用OB與BD的關系,OE與EF的關系,即可證得結論;(3)首先設AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當時,S△BEF+S△COF最大;即在旋轉過程中,當△BEF與△COF的面積之和最大時,【點睛】本題屬于四邊形的綜合題,主要考查了正方形的性質,旋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綠化苗木工程施工方案
- 人行道磚鋪設施工方案
- TSP203超前地質預報系統(tǒng)
- Brand KPIs for health insurance:UnitedHealth in the United States英文培訓課件
- 新疆烏魯木齊市六校聯(lián)考2022-2023學年高二下學期期末化學試卷(含答案)
- Brand KPIs for neobanking Monzo in the United Kingdom-英文培訓課件2025.4
- 汽車傳感器與檢測技術電子教案:蓄能器壓力傳感器電子教案
- 倉庫管理活動方案
- 仙桃采摘活動方案
- 代表小組一季度活動方案
- 2025年中考歷史滿分答題技巧解讀(超強)
- 涼山州會理市全國考調事業(yè)單位人員考試真題2024
- 2025年小升初語文沖刺押題試卷
- 中國郵政儲蓄銀行重慶分行招聘筆試題庫2025
- 兒科科室規(guī)章制度
- (高清版)DG∕TJ 08-2298-2019 海綿城市建設技術標準
- 《體外沖擊波療法》課件
- 2025-2030年國家甲級資質:中國小語種培訓融資商業(yè)計劃書
- 第23課《“蛟龍”探?!氛n件-2024-2025學年統(tǒng)編版語文七年級下冊第六單元
- 中國兒童重癥監(jiān)護病房鎮(zhèn)痛和鎮(zhèn)靜治療專家共識(2024)解讀 課件
- GB/T 13460-2025再生橡膠通用規(guī)范
評論
0/150
提交評論