四川工業(yè)科技學(xué)院《視覺導(dǎo)視設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
四川工業(yè)科技學(xué)院《視覺導(dǎo)視設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
四川工業(yè)科技學(xué)院《視覺導(dǎo)視設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
四川工業(yè)科技學(xué)院《視覺導(dǎo)視設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
四川工業(yè)科技學(xué)院《視覺導(dǎo)視設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁四川工業(yè)科技學(xué)院

《視覺導(dǎo)視設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的圖像配準(zhǔn)是將不同時間、不同視角或不同傳感器獲取的圖像進行匹配和對齊。以下關(guān)于圖像配準(zhǔn)的敘述,不正確的是()A.圖像配準(zhǔn)需要找到圖像之間的對應(yīng)點或特征,然后進行變換和對齊B.圖像配準(zhǔn)在醫(yī)學(xué)圖像分析、遙感圖像處理和三維重建等領(lǐng)域有著廣泛的應(yīng)用C.圖像配準(zhǔn)的精度和魯棒性受到圖像質(zhì)量、噪聲和幾何變形等因素的影響D.圖像配準(zhǔn)是一個簡單的過程,不需要復(fù)雜的算法和優(yōu)化2、在計算機視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強和虛擬場景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制3、在計算機視覺的人物姿態(tài)估計任務(wù)中,需要確定圖像中人物的關(guān)節(jié)位置和姿態(tài)。假設(shè)要開發(fā)一個用于健身應(yīng)用的姿態(tài)估計系統(tǒng),以下關(guān)于模型訓(xùn)練數(shù)據(jù)的獲取,哪一項是比較困難的?()A.從公開的數(shù)據(jù)集獲取大量的人物姿態(tài)圖像B.自己拍攝不同人群在各種健身動作下的圖像C.利用合成數(shù)據(jù)生成多樣化的人物姿態(tài)樣本D.從社交媒體上收集用戶分享的健身照片4、計算機視覺中的醫(yī)學(xué)圖像分析對于疾病的診斷和治療具有重要意義。以下關(guān)于醫(yī)學(xué)圖像分析的描述,不準(zhǔn)確的是()A.可以對X光、CT、MRI等醫(yī)學(xué)圖像進行病灶檢測、器官分割和疾病分類B.深度學(xué)習(xí)技術(shù)在醫(yī)學(xué)圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標(biāo)注困難和模型泛化能力不足的問題C.醫(yī)學(xué)圖像分析需要遵循嚴(yán)格的醫(yī)學(xué)標(biāo)準(zhǔn)和倫理規(guī)范,確保結(jié)果的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像分析完全依賴于計算機視覺技術(shù),醫(yī)生的經(jīng)驗和專業(yè)知識不再重要5、視頻分析是計算機視覺的一個重要領(lǐng)域。假設(shè)我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務(wù),以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學(xué)習(xí)模型直接對視頻進行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除6、在醫(yī)學(xué)圖像分析中,計算機視覺技術(shù)有助于疾病的診斷和治療。假設(shè)醫(yī)生需要對一組肺部CT圖像進行分析,以檢測是否存在腫瘤。以下關(guān)于醫(yī)學(xué)圖像分析中的計算機視覺的描述,哪一項是不準(zhǔn)確的?()A.計算機視覺算法可以自動檢測和定位肺部腫瘤,提高診斷的效率和準(zhǔn)確性B.能夠?qū)D像進行增強和預(yù)處理,突出病變區(qū)域,便于醫(yī)生觀察和判斷C.由于醫(yī)學(xué)圖像的復(fù)雜性和個體差異,計算機視覺的結(jié)果總是完全準(zhǔn)確無誤的D.可以通過大量標(biāo)注的醫(yī)學(xué)圖像數(shù)據(jù)進行訓(xùn)練,學(xué)習(xí)正常和異常的圖像特征7、計算機視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關(guān)于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進行關(guān)聯(lián)和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關(guān)系C.語義理解在圖像描述生成、問答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語義理解已經(jīng)達到了非常完美的程度,能夠準(zhǔn)確理解任何復(fù)雜的圖像或視頻內(nèi)容8、在圖像分類任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對一組包含不同動物的圖像進行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準(zhǔn)確率一定越高B.數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、裁剪等,對模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準(zhǔn)確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計特征9、在計算機視覺的三維重建任務(wù)中,需要從多視角的圖像中恢復(fù)物體的三維形狀。假設(shè)我們有一組從不同角度拍攝的建筑物圖像,以下哪種方法常用于從這些圖像中重建建筑物的三維模型?()A.立體匹配方法B.結(jié)構(gòu)光方法C.運動恢復(fù)結(jié)構(gòu)(SFM)D.基于投影的方法10、在計算機視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會對跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢,提高跟蹤性能11、在進行計算機視覺的三維重建時,需要從多個視角的圖像中恢復(fù)物體的三維形狀和結(jié)構(gòu)。假設(shè)要對一個復(fù)雜的古建筑進行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時效果較好?()A.基于立體視覺的重建B.基于運動恢復(fù)結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學(xué)習(xí)的重建12、計算機視覺中的人臉識別技術(shù)應(yīng)用廣泛。假設(shè)要在一個門禁系統(tǒng)中實現(xiàn)準(zhǔn)確的人臉識別,以下關(guān)于人臉識別方法的描述,正確的是:()A.基于幾何特征的人臉識別方法對姿態(tài)和光照變化具有很強的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫,并且識別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率13、假設(shè)要構(gòu)建一個能夠?qū)πl(wèi)星圖像進行地物分類的計算機視覺系統(tǒng),用于國土資源調(diào)查和環(huán)境監(jiān)測。由于衛(wèi)星圖像的分辨率較高且覆蓋范圍廣,以下哪種處理方式可能是必要的?()A.圖像分塊處理B.多尺度分析C.特征選擇和降維D.以上都是14、計算機視覺中的圖像去霧是一個具有挑戰(zhàn)性的問題。假設(shè)要去除一張有濃霧的風(fēng)景圖像中的霧氣,以下哪種方法可能需要對大氣散射模型有深入的了解?()A.基于深度學(xué)習(xí)的去霧方法B.基于物理模型的去霧方法C.基于圖像增強的去霧方法D.基于濾波的去霧方法15、在計算機視覺的應(yīng)用于自動駕駛領(lǐng)域,需要實時檢測道路上的交通標(biāo)志和標(biāo)線。假設(shè)車輛在高速行駛中,以下哪種技術(shù)能夠快速準(zhǔn)確地檢測到各種交通標(biāo)志,并且對光照變化和遮擋具有較強的魯棒性?()A.基于顏色和形狀特征的檢測方法B.基于深度學(xué)習(xí)的檢測方法,結(jié)合多尺度特征C.基于邊緣檢測和形態(tài)學(xué)操作的方法D.基于模板匹配和特征點匹配的方法16、計算機視覺在衛(wèi)星遙感圖像分析中的應(yīng)用可以幫助監(jiān)測地球環(huán)境和資源。假設(shè)要通過衛(wèi)星圖像分析森林的覆蓋面積變化。以下關(guān)于計算機視覺在衛(wèi)星遙感中的描述,哪一項是不準(zhǔn)確的?()A.可以通過圖像分類和分割技術(shù)區(qū)分森林、草地和建筑物等不同地物類型B.能夠?qū)Χ鄷r相的衛(wèi)星圖像進行比較,監(jiān)測森林的生長和砍伐情況C.計算機視覺在衛(wèi)星遙感中的應(yīng)用不受衛(wèi)星圖像的分辨率和光譜信息的限制D.可以結(jié)合地理信息系統(tǒng)(GIS)數(shù)據(jù),進行更深入的空間分析和決策支持17、在計算機視覺的場景理解任務(wù)中,需要理解整個圖像的語義信息。假設(shè)要分析一張城市街道的圖像中包含的物體和它們之間的關(guān)系,以下關(guān)于場景理解方法的描述,正確的是:()A.單獨對圖像中的每個物體進行識別和分類就能實現(xiàn)場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學(xué)習(xí)中的語義分割和圖模型可以更好地理解場景的結(jié)構(gòu)和語義關(guān)系D.場景理解只適用于簡單的室內(nèi)場景,對于復(fù)雜的戶外場景無法處理18、在計算機視覺的目標(biāo)識別任務(wù)中,假設(shè)要識別不同種類的水果。以下關(guān)于應(yīng)對類內(nèi)差異和類間相似性的策略,哪一項是不正確的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復(fù)雜度,避免過度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動適應(yīng)能力19、在計算機視覺中,視頻摘要生成是從長視頻中提取關(guān)鍵內(nèi)容并生成簡潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實用價值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失20、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)21、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設(shè)要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風(fēng)格的變化。以下哪種動作識別方法在處理這種復(fù)雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學(xué)習(xí)的時空卷積網(wǎng)絡(luò)D.基于隱馬爾可夫模型的動作識別22、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設(shè)要在一張街景圖像中識別出店鋪招牌上的文字。以下關(guān)于場景文本識別方法的描述,正確的是:()A.基于光學(xué)字符識別(OCR)技術(shù)的方法對字體和排版的變化適應(yīng)性強,識別準(zhǔn)確率高B.深度學(xué)習(xí)中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關(guān)注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復(fù)雜的自然場景中準(zhǔn)確無誤地識別出各種文字23、對于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復(fù)為高分辨率圖像,同時保留圖像的細節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學(xué)習(xí)的超分辨率重建模型,如SRCNNC.對低分辨率圖像進行簡單的銳化處理D.不進行任何處理,直接使用低分辨率圖像24、計算機視覺中的目標(biāo)重識別任務(wù)旨在在不同的攝像頭視角中識別出同一目標(biāo)。假設(shè)要在一個大型商場的多個攝像頭中尋找一個特定的人物。以下關(guān)于目標(biāo)重識別的描述,哪一項是不準(zhǔn)確的?()A.可以通過提取目標(biāo)的特征,如顏色、形狀和紋理,來進行重識別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識別的準(zhǔn)確率C.目標(biāo)重識別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過建立目標(biāo)的特征庫,快速在多個攝像頭中進行匹配和搜索25、在計算機視覺的圖像壓縮任務(wù)中,需要在減少數(shù)據(jù)量的同時盡量保持圖像的質(zhì)量。假設(shè)要對一組高清圖像進行壓縮,以節(jié)省存儲空間和傳輸帶寬,同時要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法二、簡答題(本大題共4個小題,共20分)1、(本題5分)計算機視覺中如何進行文具生產(chǎn)中的質(zhì)量控制?2、(本題5分)簡述圖像的對比度調(diào)整方法。3、(本題5分)說明計算機視覺中的色彩空間轉(zhuǎn)換。4、(本題5分)解釋計算機視覺在氣象預(yù)測中的應(yīng)用。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析亞馬遜的電子書閱讀器KindlePaperwhite的廣告設(shè)計,從屏幕顯示、防水功能到品牌形象傳達。討論其如何吸引讀者購買。2、(本題5分)探討某餐飲品牌的新品上市宣傳視頻設(shè)計,研究其如何通過美食展示、制作過程和食客評價,吸引顧客嘗試新品。3、(本題5分)分析某慈善機構(gòu)的宣傳海報設(shè)計,研究如何運用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論