




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁杭州科技職業(yè)技術(shù)學(xué)院《廣告設(shè)計與管理》
2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的醫(yī)學(xué)影像分析中,例如對腫瘤的檢測和分割,需要高精度和可靠性。假設(shè)我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術(shù)能夠有效地輔助醫(yī)生進行準(zhǔn)確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的分割網(wǎng)絡(luò),結(jié)合多模態(tài)數(shù)據(jù)C.基于聚類和分類的方法D.基于形態(tài)學(xué)操作和閾值分割的方法2、圖像分割是將圖像細(xì)分為不同的區(qū)域或?qū)ο蟆<僭O(shè)我們需要對醫(yī)學(xué)圖像中的腫瘤進行精確分割,以輔助醫(yī)生進行診斷和治療。在這種對精度要求很高的應(yīng)用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學(xué)習(xí)的語義分割算法,如U-Net3、在計算機視覺的視覺跟蹤與監(jiān)控應(yīng)用中,需要對特定目標(biāo)進行持續(xù)的跟蹤和監(jiān)測。假設(shè)要對一個在大型商場中移動的可疑人員進行跟蹤,同時要應(yīng)對人群遮擋和環(huán)境變化。以下哪種視覺跟蹤與監(jiān)控技術(shù)在這種情況下能夠提供更可靠的跟蹤結(jié)果?()A.多目標(biāo)跟蹤算法B.基于深度學(xué)習(xí)的單目標(biāo)跟蹤C.基于粒子濾波的跟蹤D.基于特征匹配的跟蹤4、計算機視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定目標(biāo)。假設(shè)要跟蹤一個在復(fù)雜場景中運動的人物,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準(zhǔn)確預(yù)測目標(biāo)的運動軌跡,但對目標(biāo)外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計算復(fù)雜度低,適用于實時跟蹤要求高的場景C.基于深度學(xué)習(xí)的跟蹤算法需要大量的訓(xùn)練數(shù)據(jù),并且在目標(biāo)被遮擋時容易丟失D.目標(biāo)跟蹤算法只要在初始幀中準(zhǔn)確檢測到目標(biāo),就能夠在后續(xù)幀中一直保持跟蹤的準(zhǔn)確性5、計算機視覺在文物保護和修復(fù)中具有潛在應(yīng)用。假設(shè)要對一件受損的古代書畫進行數(shù)字化修復(fù),以下關(guān)于計算機視覺在文物保護中的作用的描述,哪一項是不正確的?()A.可以通過圖像增強和去噪技術(shù)改善書畫的視覺效果B.利用圖像匹配和拼接技術(shù)還原殘缺的部分C.計算機視覺技術(shù)能夠完全恢復(fù)文物的原始狀態(tài),使其與未受損時一模一樣D.為文物修復(fù)專家提供輔助決策和參考依據(jù)6、在計算機視覺的車牌識別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準(zhǔn)確識別出車牌號碼。以下哪種技術(shù)可能有助于提高識別準(zhǔn)確率?()A.字符分割和單獨識別B.利用深度學(xué)習(xí)模型進行端到端的識別C.只關(guān)注車牌的顏色特征D.隨機猜測車牌號碼7、在計算機視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強和虛擬場景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制8、計算機視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關(guān)于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學(xué)習(xí)方法在行人重識別任務(wù)中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達到100%的準(zhǔn)確率9、在計算機視覺的圖像風(fēng)格遷移任務(wù)中,假設(shè)要將一張照片轉(zhuǎn)換為具有特定藝術(shù)風(fēng)格的圖像,以下哪種技術(shù)可能對生成逼真的風(fēng)格效果起到關(guān)鍵作用?()A.對抗生成網(wǎng)絡(luò)(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(BoltzmannMachine)10、在計算機視覺的目標(biāo)跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標(biāo)。假設(shè)我們要跟蹤一個在人群中快速移動的人物,以下哪種目標(biāo)跟蹤算法能夠更好地處理目標(biāo)的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學(xué)習(xí)的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法11、當(dāng)利用計算機視覺進行圖像去模糊任務(wù),恢復(fù)清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是12、視頻理解是計算機視覺中的一個具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準(zhǔn)確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復(fù)雜場景下的視頻內(nèi)容,不存在任何挑戰(zhàn)13、在計算機視覺的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會對結(jié)果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進分類算法來應(yīng)對14、計算機視覺在無人駕駛中的應(yīng)用至關(guān)重要。假設(shè)要通過車載攝像頭識別道路上的交通標(biāo)志和標(biāo)線,以下關(guān)于應(yīng)對復(fù)雜環(huán)境變化的策略,哪一項是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結(jié)合攝像頭和激光雷達的信息B.定期更新模型,適應(yīng)新出現(xiàn)的交通標(biāo)志和標(biāo)線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對不同天氣和光照條件下的數(shù)據(jù)進行增強訓(xùn)練15、在計算機視覺中,圖像分類是一項基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓(xùn)練一個模型來準(zhǔn)確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機器學(xué)習(xí)算法,如支持向量機(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)16、在計算機視覺的圖像分割任務(wù)中,假設(shè)要對細(xì)胞圖像進行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項是不準(zhǔn)確的?()A.模型對細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時間和計算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)17、假設(shè)要構(gòu)建一個能夠?qū)πl(wèi)星圖像進行地物分類的計算機視覺系統(tǒng),用于國土資源調(diào)查和環(huán)境監(jiān)測。由于衛(wèi)星圖像的分辨率較高且覆蓋范圍廣,以下哪種處理方式可能是必要的?()A.圖像分塊處理B.多尺度分析C.特征選擇和降維D.以上都是18、在計算機視覺的圖像壓縮任務(wù)中,假設(shè)要在保證一定圖像質(zhì)量的前提下,盡可能減少圖像的數(shù)據(jù)量。以下哪種圖像壓縮方法可能更有效?()A.基于離散余弦變換(DCT)的壓縮算法,如JPEGB.無損壓縮方法,如PNGC.不進行任何壓縮,直接存儲原始圖像D.隨機刪除圖像中的部分像素19、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中的應(yīng)用可以提供更沉浸式的體驗。假設(shè)要在VR環(huán)境中實時跟蹤用戶的頭部運動并相應(yīng)地更新場景,以下關(guān)于VR/AR計算機視覺應(yīng)用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運動跟蹤需求B.計算機視覺在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺特征提取和深度學(xué)習(xí)的頭部運動跟蹤算法可以實現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對計算機視覺算法的性能沒有影響20、在計算機視覺的圖像檢索任務(wù)中,假設(shè)要從一個大型圖像數(shù)據(jù)庫中快速找到與給定圖像相似的圖像。以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于文本標(biāo)注的圖像檢索方法依賴于人工標(biāo)注的準(zhǔn)確性和完整性,檢索效果不穩(wěn)定B.基于內(nèi)容的圖像檢索通過提取圖像的特征進行相似性比較,但特征的選擇對檢索結(jié)果影響不大C.哈希方法能夠?qū)⒏呔S的圖像特征映射為低維的哈希碼,大大提高檢索效率,但會損失一定的準(zhǔn)確性D.所有的圖像檢索方法都能夠在大規(guī)模數(shù)據(jù)庫中實現(xiàn)實時、準(zhǔn)確的檢索二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明計算機視覺在智能養(yǎng)殖中的應(yīng)用。2、(本題5分)簡述圖像的特征匹配方法。3、(本題5分)簡述圖像的形態(tài)學(xué)處理操作。三、分析題(本大題共5個小題,共25分)1、(本題5分)剖析某運動品牌的廣告視頻設(shè)計,討論其如何通過視覺效果和故事敘述吸引消費者購買產(chǎn)品。2、(本題5分)觀察某游戲的游戲界面設(shè)計,闡述其如何通過視覺元素和交互設(shè)計提升玩家的游戲體驗。3、(本題5分)一款電子產(chǎn)品的包裝盒設(shè)計簡約時尚,強調(diào)產(chǎn)品特點和品牌標(biāo)識。請研究此包裝盒設(shè)計如何保護產(chǎn)品,如何在銷售終端吸引消費者,以及在品牌傳播和產(chǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年 德州慶云縣衛(wèi)生健康系統(tǒng)招聘考試筆試試題附答案
- 年電解水制氫研究分析報告
- 2024年全球及中國儲能服務(wù)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 電動毛絨玩具行業(yè)深度研究分析報告(2024-2030版)
- 2024-2030年中國番茄醬行業(yè)市場發(fā)展監(jiān)測及投資方向研究報告
- 鉆孔用墊板項目投資可行性研究分析報告(2024-2030版)
- 國際貨運合同
- 中國足球培訓(xùn)機構(gòu)市場運營趨勢分析及投資潛力研究報告
- 土木工程學(xué)院082802農(nóng)業(yè)水土工程報錄數(shù)據(jù)分析報告初試+復(fù)試
- 2024年遵義市第一人民醫(yī)院招聘事業(yè)單位工作人員考試真題
- GB∕T 37201-2018 鎳鈷錳酸鋰電化學(xué)性能測試 首次放電比容量及首次充放電效率測試方法
- DB62∕T 2997-2019 公路工程工地建設(shè)標(biāo)準(zhǔn)
- 2021年河南中考復(fù)習(xí)專項:中考材料作文(解析版)
- 運動控制系統(tǒng)課程設(shè)計-雙閉環(huán)直流調(diào)速系統(tǒng)
- 提高學(xué)生課堂參與度研究的課題
- 原產(chǎn)地規(guī)則培訓(xùn)講座課件
- 中考英語專項復(fù)習(xí)及練習(xí)
- GB_T 22627-2022水處理劑 聚氯化鋁_(高清-最新版)
- 靜態(tài)存儲器介紹
- 藥品不良反應(yīng)報告表范例
- 《表面活性劑的應(yīng)用》PPT課件
評論
0/150
提交評論