江蘇省南京、淮安市2024-2025學年高三第二學期學習能力診斷數學試題試卷含解析_第1頁
江蘇省南京、淮安市2024-2025學年高三第二學期學習能力診斷數學試題試卷含解析_第2頁
江蘇省南京、淮安市2024-2025學年高三第二學期學習能力診斷數學試題試卷含解析_第3頁
江蘇省南京、淮安市2024-2025學年高三第二學期學習能力診斷數學試題試卷含解析_第4頁
江蘇省南京、淮安市2024-2025學年高三第二學期學習能力診斷數學試題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京、淮安市2024-2025學年高三第二學期學習能力診斷數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數的圖象交于點Q,且該冪函數在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.2.已知函數的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調遞增區間為()A. B.C. D.3.已知函數的定義域為,則函數的定義域為()A. B.C. D.4.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.5.若集合,,則下列結論正確的是()A. B. C. D.6.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.7.曲線在點處的切線方程為,則()A. B. C.4 D.88.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.9.關于圓周率π,數學發展史上出現過許多很有創意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數對;再統計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統計數估計的值,那么可以估計的值約為()A. B. C. D.10.已知函數,關于的方程R)有四個相異的實數根,則的取值范圍是(

)A. B. C. D.11.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.12.已知是等差數列的前項和,若,,則()A.5 B.10 C.15 D.20二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,且經過拋物線的焦點,則雙曲線的標準方程為______.14.的展開式中的常數項為__________.15.若復數z滿足,其中i是虛數單位,則z的模是______.16.我國古代數學著作《九章算術》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數、物價各幾何?”設人數、物價分別為、,滿足,則_____,_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線(為參數),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.18.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.19.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數,求隨機變量的分布列及數學期望.20.(12分)已知函數(,為自然對數的底數),.(1)若有兩個零點,求實數的取值范圍;(2)當時,對任意的恒成立,求實數的取值范圍.21.(12分)設的內角、、的對邊長分別為、、.設為的面積,滿足.(1)求;(2)若,求的最大值.22.(10分)隨著科技的發展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經常網購偶爾或不用網購合計男性50100女性70100合計(1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?(2)①現從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優惠券,求選取的3人中至少有2人經常網購的概率;②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為,求隨機變量的數學期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由已知可求出焦點坐標為,可求得冪函數為,設出切點通過導數求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數解析式,直線的斜率公式及導數的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.2.D【解析】

先由函數的周期和圖象的平移后的函數的圖象性質得出函數的解析式,從而得出的解析式,再根據正弦函數的單調遞增區間得出函數的單調遞增區間,可得選項.【詳解】因為函數的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區間是:,,由,,得:,,所以函數的單調遞增區間為().故選:D.本題主要考查正弦型函數的周期性,對稱性,單調性,圖象的平移,在進行圖象的平移時,注意自變量的系數,屬于中檔題.3.A【解析】試題分析:由題意,得,解得,故選A.考點:函數的定義域.4.D【解析】

先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.5.D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數學運算能力,屬于基礎題.6.A【解析】

由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A本題考查了由三視圖求幾何體的外接球的表面積,根據三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數據求得外接球的半徑是解答本題的關鍵.7.B【解析】

求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B本題主要考查了導數的幾何意義,切線方程,屬于中檔題.8.C【解析】

先求得的漸近線方程,根據沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.9.D【解析】

由試驗結果知對0~1之間的均勻隨機數,滿足,面積為1,再計算構成鈍角三角形三邊的數對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據題意知,名同學取對都小于的正實數對,即,對應區域為邊長為的正方形,其面積為,若兩個正實數能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.本題考查線性規劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.10.A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,

當時,恒成立,時,單調遞增且,方程R)有四個相異的實數根.令=則,,即.11.C【解析】

求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.12.C【解析】

利用等差通項,設出和,然后,直接求解即可【詳解】令,則,,∴,,∴.本題考查等差數列的求和問題,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設以直線為漸近線的雙曲線的方程為,再由雙曲線經過拋物線焦點,能求出雙曲線方程.【詳解】解:設以直線為漸近線的雙曲線的方程為,∵雙曲線經過拋物線焦點,∴,∴雙曲線方程為,故答案為:.本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質的合理運用,屬于中檔題.14.31【解析】

由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數項為:,得解.【詳解】解:,則的展開式中的常數項為:.故答案為:31.本題考查二項式定理及其展開式的通項公式,求某項的導數,考查計算能力.15.【解析】

先求得復數,再由復數模的計算公式即得.【詳解】,,則.故答案為:本題考查復數的四則運算和求復數的模,是基礎題.16.【解析】

利用已知條件,通過求解方程組即可得到結果.【詳解】設人數、物價分別為、,滿足,解得,.故答案為:;.本題考查函數與方程的應用,方程組的求解,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2)【解析】試題分析:(1)由消去參數,可得的普通方程,由可得的普通方程;(2)設為曲線上一點,點到曲線的圓心的距離,結合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標方程為,∴曲線的普通方程為,即.(2)設為曲線上一點,則點到曲線的圓心的距離.∵,∴當時,d有最大值.又∵P,Q分別為曲線,曲線上動點,∴的最大值為.18.(1)(2)【解析】

(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯立解得,,所以曲線和曲線圍成的圖形面積.(2)∴本題考查定積分求曲邊形的面積以及三角恒等變換的應用,屬于中檔題.19.(1)(2)(i)(ii)分布列見解析,【解析】

(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數學期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數學期望為.本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數學運算的能力,屬于中檔題.20.(1);(2)【解析】

(1)將有兩個零點轉化為方程有兩個相異實根,令求導,利用其單調性和極值求解;(2)將問題轉化為對一切恒成立,令,求導,研究單調性,求出其最值即可得結果.【詳解】(1)有兩個零點關于的方程有兩個相異實根由,知有兩個零點有兩個相異實根.令,則,由得:,由得:,在單調遞增,在單調遞減,又當時,,當時,當時,有兩個零點時,實數的取值范圍為;(2)當時,,原命題等價于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當時,,當時,,即在遞減,在遞增,由①知函數在單調遞增即,實數的取值范圍為.本題考查利用導數研究函數的單調性,極值,最值問題,考查學生轉化能力和分析能力,是一道難度較大的題目.21.(1);(2).【解析】

(1)根據條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論