




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省阜陽市潁州區第三中學2025年高三下學期3月月考數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列為等差數列,為其前項和,,則()A. B. C. D.2.已知復數滿足:,則的共軛復數為()A. B. C. D.3.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.4.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.5.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.6.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種7.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)8.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,9.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.10.已知展開式中第三項的二項式系數與第四項的二項式系數相等,,若,則的值為()A.1 B.-1 C.8l D.-8111.將4名大學生分配到3個鄉鎮去當村官,每個鄉鎮至少一名,則不同的分配方案種數是()A.18種 B.36種 C.54種 D.72種12.函數的大致圖像為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若函數有個不同的零點,則的取值范圍是___________.14.已知為偶函數,當時,,則__________.15.已知,滿足,則的展開式中的系數為______.16.展開式中的系數為_________.(用數字做答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,定點,為平面內一動點,以線段為直徑的圓內切于圓,設動點的軌跡為曲線(1)求曲線的方程(2)過點的直線與交于兩點,已知點,直線分別與直線交于兩點,線段的中點是否在定直線上,若存在,求出該直線方程;若不是,說明理由.18.(12分)已知是等差數列,滿足,,數列滿足,,且是等比數列.(1)求數列和的通項公式;(2)求數列的前項和.19.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.21.(12分)2019年春節期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數學期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?22.(10分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【詳解】由等差數列的性質可得,.故選:B.【點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.2.B【解析】
轉化,為,利用復數的除法化簡,即得解【詳解】復數滿足:所以故選:B【點睛】本題考查了復數的除法和復數的基本概念,考查了學生概念理解,數學運算的能力,屬于基礎題.3.C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4.B【解析】
設點、,設直線的方程為,由題意得出,將直線的方程與拋物線的方程聯立,列出韋達定理,結合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設點、,設直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.5.B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數的運算,屬于基礎題6.C【解析】
根據題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數原理計算可得答案.【詳解】解:根據題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.7.C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.8.A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.9.C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.10.B【解析】
根據二項式系數的性質,可求得,再通過賦值求得以及結果即可.【詳解】因為展開式中第三項的二項式系數與第四項的二項式系數相等,故可得,令,故可得,又因為,令,則,解得令,則.故選:B.【點睛】本題考查二項式系數的性質,以及通過賦值法求系數之和,屬綜合基礎題.11.B【解析】
把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉鎮即得.【詳解】把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉鎮,則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎題.12.D【解析】
通過取特殊值逐項排除即可得到正確結果.【詳解】函數的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出函數的圖象及直線,如下圖所示,因為函數有個不同的零點,所以由圖象可知,,,所以.14.【解析】
由偶函數的性質直接求解即可【詳解】.故答案為【點睛】本題考查函數的奇偶性,對數函數的運算,考查運算求解能力15.1【解析】
根據二項式定理求出,然后再由二項式定理或多項式的乘法法則結合組合的知識求得系數.【詳解】由題意,.∴的展開式中的系數為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應用是解題關鍵.16.210【解析】
轉化,只有中含有,即得解.【詳解】只有中含有,其中的系數為故答案為:210【點睛】本題考查了二項式系數的求解,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)存在,.【解析】
(1)設以為直徑的圓心為,切點為,取關于軸的對稱點,連接,計算得到,故軌跡為橢圓,計算得到答案.(2)設直線的方程為,設,聯立方程得到,,計算,得到答案.【詳解】(1)設以為直徑的圓心為,切點為,則,取關于軸的對稱點,連接,故,所以點的軌跡是以為焦點,長軸為4的橢圓,其中,曲線方程為.(2)設直線的方程為,設,直線的方程為,同理,所以,即,聯立,所以,代入得,所以點都在定直線上.【點睛】本題考查了軌跡方程,定直線問題,意在考查學生的計算能力和綜合應用能力.18.(1),;(2)【解析】試題分析:(1)利用等差數列,等比數列的通項公式先求得公差和公比,即得到結論;(2)利用分組求和法,由等差數列及等比數列的前n項和公式即可求得數列前n項和.試題解析:(Ⅰ)設等差數列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設等比數列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數列{1n}的前n項和為n(n+1),數列{2n﹣1}的前n項和為1×=2n﹣1,∴數列{bn}的前n項和為;考點:1.等差數列性質的綜合應用;2.等比數列性質的綜合應用;1.數列求和.19.(1)(2)【解析】
(1)先證得,設與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)由題意,,設與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點睛】本小題主要考查根據線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20.(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,利用空間向量法求出線面角;【詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,∵,∴,,,,∴,,,設平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的判定,面面垂直的性質定理的應用,利用空間向量法求線面角,屬于中檔題.21.(1)(2)①②第一種抽獎方案.【解析】
(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計算即可,方案二根據二項分布計算期望即可②根據①得出結論.【詳解】(1)選擇方案一,則每一次摸到紅球的概率為設“每位顧客獲得180元返金劵”為事件A,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆江西省吉安市永豐中學高一下化學期末質量檢測模擬試題含解析
- 醫院通訊費用管理辦法
- 機構工資薪酬管理辦法
- 2025年暑假八上古詩文默寫強化訓練早背晚默21-36 素材
- 智慧學校信息管理辦法
- 云資源訪問控制機制-洞察及研究
- 內部借款臺賬管理辦法
- 農業公司菌種管理辦法
- 機床廢液排放管理辦法
- 群速測量技術-洞察及研究
- 網格員培訓完整資料課件
- 富馬酸奧賽利定注射液-藥品臨床應用解讀
- 2024IPv6 技術要求 第2部分:基于 IPv6 段路由(SRv6)的 IP 承載網絡
- 新標準日本語初級上冊第七課課練
- 部編初一語文閱讀理解最全答題模板與技巧+專項訓練練習題
- 弟子規注音A4直接打印版
- 金融學原理重點總結彭興韻
- 譯林版三年級英語上冊《全冊課件》ppt
- ma600學員座艙圖冊用戶培訓中心
- 液壓過濾器的設計和制造
- 《義務教育英語課程標準(2022年版)》自測題、綜合測試題、初中英語新課標過關抽測試卷及優秀答卷(共17套附答案)
評論
0/150
提交評論