上海市嘉定區外國語學校2025屆高三下學期聯考數學試題_第1頁
上海市嘉定區外國語學校2025屆高三下學期聯考數學試題_第2頁
上海市嘉定區外國語學校2025屆高三下學期聯考數學試題_第3頁
上海市嘉定區外國語學校2025屆高三下學期聯考數學試題_第4頁
上海市嘉定區外國語學校2025屆高三下學期聯考數學試題_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市嘉定區外國語學校2025屆高三下學期聯考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.2.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數是()A. B. C. D.3.函數的值域為()A. B. C. D.4.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.5.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.6.如圖是國家統計局于2020年1月9日發布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環比)根據該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環比持平B.2018年12月至2019年12月全國居民消費價格環比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格7.設雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標準方程為()A. B.C. D.8.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.9.據國家統計局發布的數據,2019年11月全國CPI(居民消費價格指數),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%10.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有11.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.12.正項等差數列的前和為,已知,則=()A.35 B.36 C.45 D.54二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足不等式組,則的取值范圍為________.14.設函數,,其中.若存在唯一的整數使得,則實數的取值范圍是_____.15.已知數列的前項和為,且成等差數列,,數列的前項和為,則滿足的最小正整數的值為______________.16.設點P在函數的圖象上,點Q在函數的圖象上,則線段PQ長度的最小值為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某房地產開發商在其開發的某小區前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發商計劃從點出發建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設.(1)用表示線段并確定的范圍;(2)為了使小區居民可以充分地欣賞湖景,所以要將的長度設計到最長,求的最大值.18.(12分)已知拋物線的頂點為原點,其焦點關于直線的對稱點為,且.若點為的準線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.19.(12分)2019年9月26日,攜程網發布《2019國慶假期旅游出行趨勢預測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優秀導游.經驗表明,如果公司的優秀導游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導游40名,統計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數分布表如下:分組頻數(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導游中,隨機抽取3人進行業務培訓,設來自甲公司的人數為,求的分布列及數學期望.20.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.21.(12分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.22.(10分)某大學生在開學季準備銷售一種文具套盒進行試創業,在一個開學季內,每售出1盒該產品獲利50元,未售出的產品,每盒虧損30元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季進了160盒該產品,以(單位:盒,)表示這個開學季內的市場需求量,(單位:元)表示這個開學季內經銷該產品的利潤.(1)根據直方圖估計這個開學季內市場需求量的平均數和眾數;(2)將表示為的函數;(3)以需求量的頻率作為各需求量的概率,求開學季利潤不少于4800元的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數關系,兩角和的正弦公式與誘導公式,解題時要根據已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.2.B【解析】

①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.3.A【解析】

由計算出的取值范圍,利用正弦函數的基本性質可求得函數的值域.【詳解】,,,因此,函數的值域為.故選:A.【點睛】本題考查正弦型函數在區間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.4.D【解析】

利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據二次函數的性質,求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數的最小值,屬于中檔題目.5.A【解析】

作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.6.D【解析】

先對圖表數據的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數據的分析處理能力及進行簡單的合情推理,屬于中檔題.7.C【解析】

由題得,,又,聯立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標準方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,圓的方程的有關計算,考查了學生的計算能力.8.C【解析】

過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.9.D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.10.B【解析】

根據函數對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.11.B【解析】

利用古典概型概率計算方法分析出符合題意的基本事件個數,結合組合數的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數的計算,考查學生分析問題的能力,難度較易.12.C【解析】

由等差數列通項公式得,求出,再利用等差數列前項和公式能求出.【詳解】正項等差數列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數列的性質與求和公式,屬于中檔題.解等差數列問題要注意應用等差數列的性質()與前項和的關系.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

畫出不等式組表示的平面區域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為.14.【解析】

根據分段函數的解析式畫出圖像,再根據存在唯一的整數使得數形結合列出臨界條件滿足的關系式求解即可.【詳解】解:函數,且畫出的圖象如下:因為,且存在唯一的整數使得,故與在時無交點,,得;又,過定點又由圖像可知,若存在唯一的整數使得時,所以,存在唯一的整數使得所以.根據圖像可知,當時,恒成立.綜上所述,存在唯一的整數使得,此時故答案為:【點睛】本題主要考查了數形結合分析參數范圍的問題,需要根據題意分別分析定點右邊的整數點中為滿足條件的唯一整數,再數形結合列出時的不等式求的范圍.屬于難題.15.1【解析】

本題先根據公式初步找到數列的通項公式,然后根據等差中項的性質可解得的值,即可確定數列的通項公式,代入數列的表達式計算出數列的通項公式,然后運用裂項相消法計算出前項和,再代入不等式進行計算可得最小正整數的值.【詳解】由題意,當時,.當時,.則,.,,成等差數列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數的值為1.故答案為:1.【點睛】本題主要考查數列求通項公式、裂項相消法求前項和,考查了轉化思想、方程思想,考查了不等式的計算、邏輯思維能力和數學運算能力.16.【解析】

由解析式可分析兩函數互為反函數,則圖象關于對稱,則點到的距離的最小值的二倍即為所求,利用導函數即可求得最值.【詳解】由題,因為與互為反函數,則圖象關于對稱,設點為,則到直線的距離為,設,則,令,即,所以當時,,即單調遞減;當時,,即單調遞增,所以,則,所以的最小值為,故答案為:【點睛】本題考查反函數的性質的應用,考查利用導函數研究函數的最值問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2)米.【解析】

(1)過點作于點再在中利用正弦定理求解,再根據求解,進而求得.再根據確定的范圍即可.(2)根據(1)有,再設,求導分析函數的單調性與最值即可.【詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當時,單調遞增;當時,單調遞減,又,當時,取最大值,此時,的最大值為米.【點睛】本題主要考查了三角函數在實際中的應用,需要根據題意建立角度與長度間的關系,進而求導分析函數的單調性,根據三角函數值求解對應的最值即可.屬于難題.18.(1)(2)見解析,最小值為4【解析】

(1)根據焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設出的坐標,利用導數求得切線的方程,由此判斷出直線恒過拋物線焦點.求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意,解得(負根舍去)∴拋物線的方程為(2)設點,由,即,得∴拋物線在點處的切線的方程為,即∵,∴∵點在切線上,①,同理,②綜合①、②得,點的坐標都滿足方程.即直線恒過拋物線焦點當時,此時,可知:當,此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當時,最小,且最小值為4【點睛】本小題主要考查點到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點問題,考查拋物線中三角形面積的最值的求法,考查運算求解能力,屬于難題.19.(1),乙公司影響度高;(2)見解析,【解析】

(1)利用各小矩形的面積和等于1可得a,由導游人數為40人可得b,再由總收人不低于40可計算出優秀率;(2)易得總收入在中甲公司有4人,乙公司有2人,則甲公司的人數的值可能為1,2,3,再計算出相應取值的概率即可.【詳解】(1)由直方圖知,,解得,由頻數分布表中知:,解得.所以,甲公司的導游優秀率為:,乙公司的導游優秀率為:,由于,所以乙公司影響度高.(2)甲公司旅游總收入在中的有人,乙公司旅游總收入在中的有2人,故的可能取值為1,2,3,易知:,;.所以的分布列為:123P.【點睛】本題考查頻率分布直方圖、隨機變量的分布列與期望,考查學生數據處理與數學運算的能力,是一道中檔題.20.證明見解析;證明見解析.【解析】

利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論