




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京豐臺(tái)區(qū)十二中2025屆高三第二學(xué)期(4月)月考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則()A. B. C. D.22.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點(diǎn)P,使得|PA|=2|PB|,則正實(shí)數(shù)m的最小值是()A. B.3 C. D.3.如圖,在平行四邊形中,對(duì)角線與交于點(diǎn),且,則()A. B.C. D.4.已知直線過(guò)圓的圓心,則的最小值為()A.1 B.2 C.3 D.45.某幾何體的三視圖如圖所示,則該幾何體中的最長(zhǎng)棱長(zhǎng)為()A. B. C. D.6.已知等差數(shù)列中,則()A.10 B.16 C.20 D.247.設(shè)實(shí)數(shù)、滿(mǎn)足約束條件,則的最小值為()A.2 B.24 C.16 D.148.如圖,四邊形為正方形,延長(zhǎng)至,使得,點(diǎn)在線段上運(yùn)動(dòng).設(shè),則的取值范圍是()A. B. C. D.9.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.已知非零向量,滿(mǎn)足,,則與的夾角為()A. B. C. D.11.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米12.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a二、填空題:本題共4小題,每小題5分,共20分。13.已知,分別是橢圓:()的左、右焦點(diǎn),過(guò)左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),且,,則橢圓的離心率為_(kāi)_________.14.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.15.我國(guó)古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:?jiǎn)柾し綆缀危俊贝笾乱馑际牵河幸粋€(gè)四棱錐下底邊長(zhǎng)為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺(tái)狀方亭,且四棱臺(tái)的上底邊長(zhǎng)為六尺,則該正四棱臺(tái)的高為_(kāi)_______尺,體積是_______立方尺(注:1丈=10尺).16.已知各項(xiàng)均為正數(shù)的等比數(shù)列的前項(xiàng)積為,,(且),則__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開(kāi)展愛(ài)國(guó)衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開(kāi)展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過(guò)問(wèn)卷調(diào)查,隨機(jī)收集了該區(qū)居民六類(lèi)日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類(lèi)習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類(lèi);(2)垃圾處理狀況類(lèi);(3)體育鍛煉狀況類(lèi);(4)心理健康狀況類(lèi);(5)膳食合理狀況類(lèi);(6)作息規(guī)律狀況類(lèi).經(jīng)過(guò)數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類(lèi)垃圾處理狀況類(lèi)體育鍛煉狀況類(lèi)心理健康狀況類(lèi)膳食合理狀況類(lèi)作息規(guī)律狀況類(lèi)有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問(wèn)卷只調(diào)查上述六類(lèi)狀況之一,各類(lèi)調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類(lèi)中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類(lèi)、體育鍛煉狀況類(lèi)、膳食合理狀況類(lèi)”三類(lèi)習(xí)慣方面,至少具備兩類(lèi)良好習(xí)慣的概率;(3)利用上述六類(lèi)習(xí)慣調(diào)查的排序,用“”表示任選一位第k類(lèi)受訪者是習(xí)慣良好者,“”表示任選一位第k類(lèi)受訪者不是習(xí)慣良好者().寫(xiě)出方差,,,,,的大小關(guān)系.18.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.19.(12分)已知函數(shù),,.函數(shù)的導(dǎo)函數(shù)在上存在零點(diǎn).求實(shí)數(shù)的取值范圍;若存在實(shí)數(shù),當(dāng)時(shí),函數(shù)在時(shí)取得最大值,求正實(shí)數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實(shí)數(shù)的值.20.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知矩陣,.求矩陣;求矩陣的特征值.22.(10分)已知函數(shù)(1)當(dāng)時(shí),證明,在恒成立;(2)若在處取得極大值,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
結(jié)合求得的值,由此化簡(jiǎn)所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求值,考查二倍角公式,屬于中檔題.2.D【解析】
設(shè)點(diǎn),由,得關(guān)于的方程.由題意,該方程有解,則,求出正實(shí)數(shù)m的取值范圍,即求正實(shí)數(shù)m的最小值.【詳解】由題意,設(shè)點(diǎn).,即,整理得,則,解得或..故選:.【點(diǎn)睛】本題考查直線與方程,考查平面內(nèi)兩點(diǎn)間距離公式,屬于中檔題.3.C【解析】
畫(huà)出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫(huà)出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問(wèn)題(1)只要兩個(gè)向量不共線,就可以作為平面的一組基底,基底可以有無(wú)窮多組,在解決具體問(wèn)題時(shí),合理選擇基底會(huì)給解題帶來(lái)方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.4.D【解析】
圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開(kāi)計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿(mǎn)足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.5.C【解析】
根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過(guò)S作,連接BD,,再求得其它的棱長(zhǎng)比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過(guò)S作,連接BD,則,所以,,,,該幾何體中的最長(zhǎng)棱長(zhǎng)為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.6.C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計(jì)算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的常考題型.7.D【解析】
做出滿(mǎn)足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿(mǎn)足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),取得最小值,由,解得,即,所以的最小值為.故選:D.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.8.C【解析】
以為坐標(biāo)原點(diǎn),以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算計(jì)算即可解決.【詳解】以為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長(zhǎng)為1,則,,設(shè),則,所以,且,故.故選:C.【點(diǎn)睛】本題考查利用向量的坐標(biāo)運(yùn)算求變量的取值范圍,考查學(xué)生的基本計(jì)算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.9.D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).10.B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.11.B【解析】
由于實(shí)際問(wèn)題中扇形弧長(zhǎng)較小,可將導(dǎo)線的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線長(zhǎng)度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.12.A【解析】
令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導(dǎo)得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時(shí),g(x)<0,x>0時(shí),g(x)>0,g(x)max=g(1)=1e,可畫(huà)出函數(shù)g(x)的圖象(見(jiàn)下圖),要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點(diǎn)睛】解決函數(shù)零點(diǎn)問(wèn)題,常常利用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設(shè),則,,由知,,,作,垂足為C,則C為的中點(diǎn),在和中分別求出,進(jìn)而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因?yàn)?所以,,作,垂足為C,則C為的中點(diǎn),在中,因?yàn)?所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點(diǎn)睛】本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點(diǎn)三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、常考題型.14.1【解析】
根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.15.213892【解析】
根據(jù)題意畫(huà)出圖形,利用棱錐與棱臺(tái)的結(jié)構(gòu)特征求出正四棱臺(tái)的高,再計(jì)算它的體積.【詳解】如圖所示:正四棱錐P-ABCD的下底邊長(zhǎng)為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺(tái)ABCD-A'B'C'D',且上底邊長(zhǎng)為A'B'=6尺,所以,解得,所以該正四棱臺(tái)的體積是,故答案為:21;3892.【點(diǎn)睛】本題考查了棱錐與棱臺(tái)的結(jié)構(gòu)特征與應(yīng)用問(wèn)題,也考查了棱臺(tái)的體積計(jì)算問(wèn)題,屬于中檔題.16.【解析】
利用等比數(shù)列的性質(zhì)求得,進(jìn)而求得,再利用對(duì)數(shù)運(yùn)算求得的值.【詳解】由于,,所以,則,∴,,.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)(3)【解析】
(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類(lèi)中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類(lèi)、體育鍛煉狀況類(lèi)、膳食合理狀況類(lèi)”三類(lèi)習(xí)慣方面,至少具備兩類(lèi)良好習(xí)慣“,則(E),求出即可;(3)根據(jù)題意,寫(xiě)出即可.【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類(lèi)中習(xí)慣良好者“的事件為,有效問(wèn)卷共有(份,其中受訪者中膳食合理習(xí)慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據(jù)題意,可知(A),(B),(C),設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類(lèi)、體育鍛煉狀況類(lèi)、膳食合理狀況類(lèi)”三類(lèi)習(xí)慣方面,至少具備兩類(lèi)良好習(xí)慣“則.所以該居民在“衛(wèi)生習(xí)慣狀況類(lèi)、體育鍛煉狀況類(lèi)、膳食合理狀況類(lèi)”三類(lèi)習(xí)慣至少具備2個(gè)良好習(xí)慣的概率為0.766.(3).【點(diǎn)睛】本題考查了古典概型求概率,獨(dú)立性事件,互斥性事件求概率等,考查運(yùn)算能力和事件應(yīng)用能力,中檔題.18.(I)證明見(jiàn)解析;(II)1【解析】
(I)過(guò)D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過(guò)點(diǎn)D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計(jì)算夾角得到答案.【詳解】(I)過(guò)D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關(guān)系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過(guò)點(diǎn)D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點(diǎn)睛】本題考查了線線垂直,線面夾角,意在考查學(xué)生的計(jì)算能力和空間想象能力.19.;4;12.【解析】
由題意可知,,求導(dǎo)函數(shù),方程在區(qū)間上有實(shí)數(shù)解,求出實(shí)數(shù)的取值范圍;由,則,分步討論,并利用導(dǎo)函數(shù)在函數(shù)的單調(diào)性的研究,得出正實(shí)數(shù)的最大值;設(shè)直線與曲線的切點(diǎn)為,因?yàn)椋郧芯€斜率,切線方程為,設(shè)直線與曲線的切點(diǎn)為,因?yàn)椋郧芯€斜率,即切線方程為,整理得.所以,求得,設(shè),則,所以在上單調(diào)遞增,最后求出實(shí)數(shù)的值.【詳解】由題意可知,,則,即方程在區(qū)間上有實(shí)數(shù)解,解得;因?yàn)椋瑒t,①當(dāng),即時(shí),恒成立,所以在上單調(diào)遞增,不符題意;②當(dāng)時(shí),令,解得:,當(dāng)時(shí),,單調(diào)遞增,所以不存在,使得在上的最大值為,不符題意;③當(dāng)時(shí),,解得:,且當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,若,則在上單調(diào)遞減,所以,若,則上單調(diào)遞減,在上單調(diào)遞增,由題意可知,,即,整理得,因?yàn)榇嬖冢仙鲜剑裕獾茫C上,的最大值為4;設(shè)直線與曲線的切點(diǎn)為,因?yàn)椋郧芯€斜率,即切線方程整理得:由題意可知,,即,即,解得所以切線方程為,設(shè)直線與曲線的切點(diǎn)為,因?yàn)椋郧芯€斜率,即切線方程為,整理得.所以,消去,整理得,且因?yàn)椋獾茫O(shè),則,所以在上單調(diào)遞增,因?yàn)椋裕裕?【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的研究,導(dǎo)數(shù)的幾何意義,屬
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 共享出行信用體系在2025年的發(fā)展現(xiàn)狀與趨勢(shì)分析報(bào)告
- 西方思潮對(duì)政治的影響試題及答案
- 中國(guó)人民保險(xiǎn)集團(tuán)招聘總部工作人員考試真題2024
- 溫州文成縣人民法院選調(diào)事業(yè)編制人員考試真題2024
- 公共政策中的性別平等問(wèn)題研究試題及答案
- 智慧港口自動(dòng)化裝卸設(shè)備在2025年智能化改造效果評(píng)估分析報(bào)告
- 網(wǎng)絡(luò)工程師考試指南及試題及答案
- 西方國(guó)家政府與民間的關(guān)系試題及答案
- 2025年智慧港口自動(dòng)化裝卸設(shè)備在港口物流智能化發(fā)展中的市場(chǎng)機(jī)遇與挑戰(zhàn)報(bào)告
- 機(jī)電工程職業(yè)道德規(guī)范試題及答案
- 2022年高考生物真題試卷(海南卷)168帶答案解析
- 2023高考真題24 三角形中基本量的計(jì)算問(wèn)題
- 餐廳小票打印模板
- 鉻(六價(jià))方法驗(yàn)證方法證實(shí)報(bào)告
- 腦疝急救流程圖
- 臨床藥理學(xué)(完整課件)
- 公共資源交易中心政府采購(gòu)業(yè)務(wù)流程圖
- 建筑施工單位職業(yè)危害歸類(lèi)表
- 重慶市醫(yī)療服務(wù)價(jià)格-重慶市《醫(yī)療服務(wù)價(jià)格手冊(cè)-》
- 2023年廣西中考語(yǔ)文真題及參考答案
- 初中數(shù)學(xué)一題多解
評(píng)論
0/150
提交評(píng)論