




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省-北京師范大學東莞石竹附屬學校2025年高三第二學期期末考試數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④2.設數列是等差數列,,.則這個數列的前7項和等于()A.12 B.21 C.24 D.363.已知復數滿足,則的共軛復數是()A. B. C. D.4.已知函數,若,則a的取值范圍為()A. B. C. D.5.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或6.對于函數,若滿足,則稱為函數的一對“線性對稱點”.若實數與和與為函數的兩對“線性對稱點”,則的最大值為()A. B. C. D.7.若函數在處有極值,則在區間上的最大值為()A. B.2 C.1 D.38.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.9.已知函數在上單調遞增,則的取值范圍()A. B. C. D.10.已知函數,則()A.函數在上單調遞增 B.函數在上單調遞減C.函數圖像關于對稱 D.函數圖像關于對稱11.若函數函數只有1個零點,則的取值范圍是()A. B. C. D.12.已知函數,則下列結論錯誤的是()A.函數的最小正周期為πB.函數的圖象關于點對稱C.函數在上單調遞增D.函數的圖象可由的圖象向左平移個單位長度得到二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則14.甲,乙兩隊參加關于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,若兩隊各出一名隊員進行比賽,則出場的兩名運動員編號相同的概率為______.15.拋物線上到其焦點距離為5的點有_______個.16.已知復數(為虛數單位)為純虛數,則實數的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是各項均為正數的等比數列,,且,,成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,為數列的前項和,記,證明:.18.(12分)如圖,正方形是某城市的一個區域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優先直行,求小明騎行途中恰好經過處,且全程不等紅綠燈的概率;(3)請你根據每條可能的路線中等紅綠燈的次數的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?19.(12分)在直角坐標系中,曲線的標準方程為.以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)若點在曲線上,點在直線上,求的最小值.20.(12分)在直角坐標系中,直線l過點,且傾斜角為,以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.求直線l的參數方程和曲線C的直角坐標方程,并判斷曲線C是什么曲線;設直線l與曲線C相交與M,N兩點,當,求的值.21.(12分)已知函數.(1)討論的單調性;(2)若函數在區間上的最小值為,求m的值.22.(10分)已知函數(1)求函數在處的切線方程(2)設函數,對于任意,恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
求出圓心到直線的距離為:,得出,根據條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據點到直線距離可知,①②④滿足條件.故選:D.【點睛】本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.2.B【解析】
根據等差數列的性質可得,由等差數列求和公式可得結果.【詳解】因為數列是等差數列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數列的通項公式,性質,等差數列的和,屬于中檔題.3.B【解析】
根據復數的除法運算法則和共軛復數的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數的除法的運算法則,考查了復數的共軛復數的定義,屬于基礎題.4.C【解析】
求出函數定義域,在定義域內確定函數的單調性,利用單調性解不等式.【詳解】由得,在時,是增函數,是增函數,是增函數,∴是增函數,∴由得,解得.故選:C.【點睛】本題考查函數的單調性,考查解函數不等式,解題關鍵是確定函數的單調性,解題時可先確定函數定義域,在定義域內求解.5.B【解析】
根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.6.D【解析】
根據已知有,可得,只需求出的最小值,根據,利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數函數的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.7.B【解析】
根據極值點處的導數為零先求出的值,然后再按照求函數在連續的閉區間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數在上遞增,在上遞減,在上遞增.則,,由于,所以在區間上的最大值為2.故選:B.【點睛】本題考查了導數極值的性質以及利用導數求函數在連續的閉區間上的最值問題的基本思路,屬于中檔題.8.A【解析】
根據題意,用表示出與,求出的值即可.【詳解】解:根據題意,設,則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應用,關鍵是要找到一組合適的基底表示向量,是基礎題.9.B【解析】
由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.10.C【解析】
依題意可得,即函數圖像關于對稱,再求出函數的導函數,即可判斷函數的單調性;【詳解】解:由,,所以函數圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數的對稱性的判定,利用導數判斷函數的單調性,屬于基礎題.11.C【解析】
轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態相切時的斜率,數形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數在函數零點問題中的應用,考查了學生數形結合,轉化劃歸,數學運算的能力,屬于較難題.12.D【解析】
由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】
先根據約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【點睛】本題主要考查線性規劃的基本應用,利用數形結合,結合目標函數的幾何意義是解決此類問題的基本方法.14.【解析】
出場運動員編號相同的事件顯然有3種,計算出總的基本事件數,由古典概型概率計算公式求得答案.【詳解】甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,出場的兩名運動員編號相同的事件數為3,出現的基本事件總數,則出場的兩名運動員編號相同的概率為.故答案為:【點睛】本題考查求古典概率的概率問題,屬于基礎題.15.2【解析】
設符合條件的點,由拋物線的定義可得,即可求解.【詳解】設符合條件的點,則,所以符合條件的點有2個.故答案為:2【點睛】本題考查拋物線的定義的應用,考查拋物線的焦半徑.16.【解析】
利用復數的乘法求解再根據純虛數的定義求解即可.【詳解】解:復數為純虛數,解得.故答案為:.【點睛】本題主要考查了根據復數為純虛數求解參數的問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ),;(Ⅱ)見解析【解析】
(Ⅰ)由,且成等差數列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數列是各項均為正數的等比數列,,可設公比為q,,又成等差數列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【點睛】本題主要考查等差等比數列的綜合應用,以及用裂項相消法求和并證明不等式,考查學生的運算求解能力和推理證明能力.18.(1)6種;(2);(3).【解析】
(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學的6條路線進行分析求均值,均值越大的應避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數為條.(2)小明途中恰好經過處,共有4條路線:①當走時,全程不等紅綠燈的概率;②當走時,全程不等紅綠燈的概率;③當走時,全程不等紅綠燈的概率;④當走時,全程不等紅綠燈的概率.所以途中恰好經過處,且全程不等信號燈的概率.(3)設以下第條的路線等信號燈的次數為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學的最佳路線為;應盡量避開.【點睛】本題考查概率在實際生活中的綜合應用問題,考查學生邏輯推理與運算能力,是一道有一定難度的題.19.(1)(2)【解析】
(1)直接利用極坐標公式計算得到答案(2)設,,根據三角函數的有界性得到答案.【詳解】(1)因為,所以,因為所以直線的直角坐標方程為.(2)由題意可設,則點到直線的距離.因為,所以,因為,故的最小值為.【點睛】本題考查了極坐標方程,參數方程,意在考查學生的計算能力和轉化能力.20.(Ⅰ)曲線是焦點在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線的參數方程為,(為參數),;曲線的直角坐標方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數方程為.曲線的直角坐標方程為,即,所以曲線是焦點在軸上的橢圓.(Ⅱ)將的參數方程代入曲線的直角坐標方程為得,,得,,21.(1)見解析(2)【解析】
(1)先求導,再對m分類討論,求出的單調性;(2)對m分三種情況討論求函數在區間上的最小值即得解.【詳解】(1)若,當時,;當時.,所以在上單調遞增,在上單調遞減若.在R上單調遞增若,當時,;當時.,所以在上單調遞增,在上單調遞減(2)由(1)可知,當時,在上單調遞增,則.則不合題意當時,在上單調遞減,在上單調遞增.則,即又因為單調遞增,且,故綜上,【點睛】本題主要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江教師考試試題及答案
- 運營師筆試題目及答案
- 園林綠化工初級考試試題及答案
- 玉溪農職筆試題目及答案
- 福建省福州市2025屆高三下學期第五次模擬考試語文試題及參考答案
- 高效灌溉系統與水資源管理-洞察闡釋
- 金融行業大數據的實時分析與處理技術
- 跨部門團隊協作的挑戰與突破
- 跨界合作對品牌發展的影響
- 跨境供應鏈風險識別與防范措施
- 2025年全國統一高考數學試題全國二卷
- 門窗安裝考試題及答案
- 2025佛山市順德區輔警考試試卷真題
- 旅游度假區運營管理方案
- 健康城市有關課件
- T/CEMIA 026-2021濕電子化學品技術成熟度等級劃分及定義
- 浙江省金華市東陽市2025年七年級下學期期末數學試題及答案
- 2025-2030中國保鮮盒市場營銷策略及前景供需調查分析研究報告
- 珠江三角洲環境保護規劃綱要(2024-2025年)
- 林業法律法規試題及答案
- 江西省煙草專賣局(公司)筆試試題2024
評論
0/150
提交評論