




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市西城區156中學2025屆高三下學期第二次質量測試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.2.若的展開式中含有常數項,且的最小值為,則()A. B. C. D.3.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.4.復數的共軛復數在復平面內所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在區間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.6.給出個數,,,,,,其規律是:第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,以此類推,要計算這個數的和.現已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;7.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.8.的展開式中有理項有()A.項 B.項 C.項 D.項9.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.10.已知集合,則=A. B. C. D.11.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.412.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數為奇函數,則_______.14.的展開式中的常數項為_______.15.已知函數,則曲線在處的切線斜率為________.16.已知集合,,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.18.(12分)選修4-4:坐標系與參數方程在平面直角坐標系xOy中,已知曲線C的參數方程為(α為參數).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.19.(12分)在直角坐標系中,直線的參數方程為(為參數),直線的參數方程為,(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.20.(12分)在平面直角坐標系中,直線與拋物線:交于,兩點,且當時,.(1)求的值;(2)設線段的中點為,拋物線在點處的切線與的準線交于點,證明:軸.21.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.22.(10分)的內角的對邊分別為,若(1)求角的大小(2)若,求的周長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.2.C【解析】展開式的通項為,因為展開式中含有常數項,所以,即為整數,故n的最小值為1.所以.故選C點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第項,由特定項得出值,最后求出其參數.3.B【解析】
據題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據坐標形式下向量的數量積運算計算出結果.【詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標系解決向量的數量積問題,難度一般.長方形、正方形、菱形中的向量數量積問題,如果直接計算較麻煩可考慮用建系的方法求解.4.D【解析】
由復數除法運算求出,再寫出其共軛復數,得共軛復數對應點的坐標.得結論.【詳解】,,對應點為,在第四象限.故選:D.【點睛】本題考查復數的除法運算,考查共軛復數的概念,考查復數的幾何意義.掌握復數的運算法則是解題關鍵.5.D【解析】
利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.6.A【解析】
要計算這個數的和,這就需要循環50次,這樣可以確定判斷語句①,根據累加最的變化規律可以確定語句②.【詳解】因為計算這個數的和,循環變量的初值為1,所以步長應該為1,故判斷語句①應為,第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環結構,正確讀懂題意是解本題的關鍵.7.D【解析】
根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.8.B【解析】
由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.9.B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯立,可得A,B的縱坐標,利用,求出a,b的關系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質,考查向量知識,考查學生的計算能力,屬于中檔題.10.C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數學運算素養.采取數軸法,利用數形結合的思想解題.【詳解】由題意得,,則.故選C.【點睛】不能領會交集的含義易致誤,區分交集與并集的不同,交集取公共部分,并集包括二者部分.11.D【解析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.12.A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】
由是定義在上的奇函數,可知對任意的,都成立,代入函數式可求得的值.【詳解】由題意,的定義域為,,是奇函數,則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數性質的應用,考查學生的計算求解能力,屬于基礎題.14.【解析】
寫出展開式的通項公式,考慮當的指數為零時,對應的值即為常數項.【詳解】的展開式通項公式為:,令,所以,所以常數項為.
故答案為:.【點睛】本題考查二項展開式中指定項系數的求解,難度較易.解答問題的關鍵是,能通過展開式通項公式分析常數項對應的取值.15.【解析】
求導后代入可構造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點睛】本題考查切線斜率的求解問題,考查導數的幾何意義,屬于基礎題.16.【解析】
由于,,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)取中點,連,,根據平行四邊形,可得,進而證得平面平面,利用面面垂直的性質,得平面,又由,即可得到平面.(Ⅱ)根據三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據三棱錐的體積公式,得.【點睛】本題主要考查了空間中線面位置關系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關系的判定定理和性質定理,以及合理利用“等體積法”求解是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.18.(1),(2)【解析】
試題分析:利用將極坐標方程化為直角坐標方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設點P的坐標為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標方程為x+y=1.設點P的坐標為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標方程化為直角坐標方程,點到直線距離公式19.(Ⅰ)直線的極坐標方程為,直線的極坐標方程為,的直角坐標方程為;(Ⅱ)2.【解析】
(Ⅰ)由定義可直接寫出直線的極坐標方程,對曲線同乘可得:,轉化成直角坐標為;(Ⅱ)分別聯立兩直線和曲線的方程,由得,由得,則,結合三角函數即可求解;【詳解】(Ⅰ)直線的極坐標方程為,直線的極坐標方程為由曲線的極坐標方程得,所以的直角坐標方程為.(Ⅱ)與的極坐標方程聯立得所以.與的極坐標方程聯立得所以.所以.所以當時,取最小值2.【點睛】本題考查參數方程與極坐標方程的互化,極坐標方程與直角坐標方程的互化,極坐標中的幾何意義,屬于中檔題20.(1)1;(2)見解析【解析】
(1)設,,聯立直線和拋物線方程,得,寫出韋達定理,根據弦長公式,即可求出;(2)由,得,根據導數的幾何意義,求出拋物線在點點處切線方程,進而求出,即可證出軸.【詳解】解:(1)設,,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設,,由,得,從而拋物線在點點處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點睛】本題考查直線與拋物線的位置關系,涉及聯立方程組、韋達定理、弦長公式以及利用導數求切線方程,考查轉化思想和計算能力.21.(1)(2)【解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 豬鏈球菌病的臨床鑒別與防治
- 房屋更名合同協議書模板
- 物資清點合同協議書模板
- 某蔬菜瓜果物流園商業計劃書
- 國潮活動策劃方案
- 美業資源合作合同協議書
- 公司土地租賃合同協議書
- 租地合租地合同協議書
- 武漢動物基因疫苗項目商業計劃書范文參考
- 商丘鋁合金精密壓鑄件項目可行性研究報告
- GB/T 36713-2018能源管理體系能源基準和能源績效參數
- GB/T 25068.1-2020信息技術安全技術網絡安全第1部分:綜述和概念
- “二級甲等婦幼保健院”評審匯報材料
- 《狼王夢》讀書分享PPT
- 發展心理學第14章-兒童道德的發展課件
- 三年級美術下冊第10課《快樂的節日》優秀課件1人教版
- 電力市場交易模式
- 第四課《單色版畫》 課件
- 門診手術麻醉原則課件
- 自動噴水滅火系統質量驗收項目缺陷判定記錄
- 提高腸鏡患者腸道準備合格率課件
評論
0/150
提交評論