湖南省邵陽市邵東縣邵東一中2025年高三3月綜合素養調研數學試題理試題_第1頁
湖南省邵陽市邵東縣邵東一中2025年高三3月綜合素養調研數學試題理試題_第2頁
湖南省邵陽市邵東縣邵東一中2025年高三3月綜合素養調研數學試題理試題_第3頁
湖南省邵陽市邵東縣邵東一中2025年高三3月綜合素養調研數學試題理試題_第4頁
湖南省邵陽市邵東縣邵東一中2025年高三3月綜合素養調研數學試題理試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省邵陽市邵東縣邵東一中2025年高三3月綜合素養調研數學試題理試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數字特征是()A.方差 B.中位數 C.眾數 D.平均數2.已知向量,,當時,()A. B. C. D.3.已知實數,則下列說法正確的是()A. B.C. D.4.關于函數,有下述三個結論:①函數的一個周期為;②函數在上單調遞增;③函數的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③5.已知函數,則下列結論錯誤的是()A.函數的最小正周期為πB.函數的圖象關于點對稱C.函數在上單調遞增D.函數的圖象可由的圖象向左平移個單位長度得到6.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.327.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.8.設集合,集合,則=()A. B. C. D.R9.已知數列滿足:,則()A.16 B.25 C.28 D.3310.已知函數的最大值為,若存在實數,使得對任意實數總有成立,則的最小值為()A. B. C. D.11.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個12.下邊程序框圖的算法源于我國古代的中國剩余定理.把運算“正整數除以正整數所得的余數是”記為“”,例如.執行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.19二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在正四棱柱中,P是側棱上一點,且.設三棱錐的體積為,正四棱柱的體積為V,則的值為________.14.能說明“若對于任意的都成立,則在上是減函數”為假命題的一個函數是________.15.已知在等差數列中,,,前n項和為,則________.16.已知是等比數列,若,,且∥,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)若對于任意實數,恒成立,求實數的范圍;(2)當時,是否存在實數,使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.18.(12分)如圖,已知橢圓C:x24+y2=1,F為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.19.(12分)如圖,四棱錐中,側面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.20.(12分)已知函數.(1)求不等式的解集;(2)若不等式對恒成立,求實數的取值范圍.21.(12分)如圖,過點且平行與x軸的直線交橢圓于A、B兩點,且.(1)求橢圓的標準方程;(2)過點M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點E、F,求證:是定值.22.(10分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規定為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優秀的概率;(Ⅲ)記表示學生的考核成績在區間的概率,根據以往培訓數據,規定當時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

通過方差公式分析可知方差沒有改變,中位數、眾數和平均數都發生了改變.【詳解】由題可知,中位數和眾數、平均數都有變化.本次和上次的月考成績相比,成績和平均數都增加了50,所以沒有改變,根據方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數字特征,意在考查學生對這些知識的理解掌握水平.2、A【解析】

根據向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.【點睛】本題考查向量的坐標運算、誘導公式、二倍角公式、同角間的三角函數關系,屬于中檔題.3、C【解析】

利用不等式性質可判斷,利用對數函數和指數函數的單調性判斷.【詳解】解:對于實數,,不成立對于不成立.對于.利用對數函數單調遞增性質,即可得出.對于指數函數單調遞減性質,因此不成立.故選:.【點睛】利用不等式性質比較大小.要注意不等式性質成立的前提條件.解決此類問題除根據不等式的性質求解外,還經常采用特殊值驗證的方法.4、C【解析】

①用周期函數的定義驗證.②當時,,,再利用單調性判斷.③根據平移變換,函數的值域等價于函數的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數的值域等價于函數的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.5、D【解析】

由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.6、A【解析】

根據三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎題.7、B【解析】

由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數學轉化思想方法與數形結合的解題思想方法,是中檔題.8、D【解析】試題分析:由題,,,選D考點:集合的運算9、C【解析】

依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.10、B【解析】

根據三角函數的兩角和差公式得到,進而可以得到函數的最值,區間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數則函數的最大值為2,存在實數,使得對任意實數總有成立,則區間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數的兩角和差的正余弦公式的應用,以及三角函數的圖像的性質的應用,題目比較綜合.11、B【解析】

根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數的計算,當集合中有元素時,集合子集的個數為,真子集個數為,非空子集為,非空真子集為,屬基礎題.12、B【解析】

由已知中的程序框圖可知,該程序的功能是利用循環結構計算并輸出變量的值,模擬程序的運行過程,代入四個選項進行驗證即可.【詳解】解:由程序框圖可知,輸出的數應為被3除余2,被5除余2的且大于10的最小整數.若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點睛】本題考查了程序框圖.當循環的次數不多,或有規律時,常采用循環模擬或代入選項驗證的方法進行解答.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設正四棱柱的底面邊長,高,再根據柱體、錐體的體積公式計算可得.【詳解】解:設正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎題.14、答案不唯一,如【解析】

根據對基本函數的理解可得到滿足條件的函數.【詳解】由題意,不妨設,則在都成立,但是在是單調遞增的,在是單調遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點睛】本題考查對基本初等函數的圖像和性質的理解,關鍵是假設出一個在上不是單調遞減的函數,再檢驗是否滿足命題中的條件,屬基礎題.15、39【解析】

設等差數列公差為d,首項為,再利用基本量法列式求解公差與首項,進而求得即可.【詳解】設等差數列公差為d,首項為,根據題意可得,解得,所以.故答案為:39【點睛】本題考查等差數列的基本量計算以及前n項和的公式,屬于基礎題.16、【解析】若,,且∥,則,由是等比數列,可知公比為..故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)不存在實數,使曲線在點處的切線與軸垂直.【解析】

(1)分類時,恒成立,時,分離參數為,引入新函數,利用導數求得函數最值即可;(2),導出導函數,問題轉化為在上有解.再用導數研究的性質可得.【詳解】解:(1)因為當時,恒成立,所以,若,為任意實數,恒成立.若,恒成立,即當時,,設,,當時,,則在上單調遞增,當時,,則在上單調遞減,所以當時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設,則,當時,,故在上為增函數,因此在區間上的最小值,所以,當時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數解.而,即方程無實數解.故不存在實數,使曲線在點處的切線與軸垂直.【點睛】本題考查不等式恒成立,考查用導數的幾何意義,由導數幾何把問題進行轉化是解題關鍵.本題屬于困難題.18、(I)|FP|=2-32x【解析】

(I)直接利用兩點間距離公式化簡得到答案.(II)設Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點O到直線l的距離為d=m【點睛】本題考查了橢圓內的線段長度,定值問題,意在考查學生的計算能力和綜合應用能力.19、(1)見解析(2)【解析】

(1)根據平面,利用線面垂直的定義可得,再由,根據線面垂直的判定定理即可證出.(2)取的中點,連接,以為坐標原點,分別為正半軸建立空間直角坐標系求出平面的一個法向量,利用空間向量法即可求解.【詳解】因為平面平面,所以由為等腰直角三角形,所以又,故平面.取的中點,連接,因為,所以因為平面,所以平面所以平面如圖,以為坐標原點,分別為正半軸建立空間直角坐標系則,又,所以且于是設平面的法向量為,則令得平面的一個法向量設直線與平面所成的角為,則【點睛】本題考查了線面垂直的定義、判定定理以及空間向量法求線面角,屬于中檔題.20、(1)(2)【解析】

(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數,∴當時,即【點睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關鍵.21、(1);(2)證明見解析.【解析】

(1)由題意求得的坐標,代入橢圓方程求得,由此求得橢圓的標準方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,可得關于的一元二次方程,設出的坐標,分別求出直線與直線的方程,從而求得兩點的縱坐標,利用根與系數關系可化簡證得為定值.【詳解】(1)由已知可得:,代入橢圓方程得:橢圓方程為;(2)設直線CD的方程為,代入,得:設,,則有,則AC的方程為,令,得BD的方程為,令,得,證畢.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查計算能力,是難題.22、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】

(Ⅰ)根據莖葉圖求出滿足條件的概率即可;(Ⅱ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論